

Abschätzung der Stickstoff- und Säuredepositionen für das Industrieareal "newPark" in Datteln

Bericht C 5085-9.2 vom 19.12.2014

Auftraggeber: newPark

Planungs- und Entwicklungsgesellschaft mbH

Genthiner Str. 8 45711 Datteln

VISIONS FIND SPACE

Gefördert durch:

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

Ministerium für Wirtschaft, Energie, Industrie, Mittelstand und Handwerk des Landes Nordrhein-Westfalen

Bericht-Nr.: C 5085-9.2

Datum: 19.12.2014

Niederlassung: Dortmund

Ref.: OS

Peutz Consult GmbH Beratende Ingenieure VBI

Messstelle nach § 26 BlmSchG zur Ermittlung der Emissionen und Immissionen von Geräuschen und Erschütterungen

VMPA Güteprüfstelle für den Schallschutz im Hochbau

Leitung:

Dipl.-Phys. Axel Hübel

Dipl.-Ing. Heiko Kremer-Bertram Staatlich anerkannter Sachverständiger für Schall- und Wärmeschutz

Dipl.-Ing. Mark Bless

Anschriften:

Kolberger Straße 19 40599 Düsseldorf Tel. +49 211 999 582 60 Fax +49 211 999 582 70 dus@peutz.de

Martener Straße 535 44379 Dortmund Tel. +49 231 725 499 10 Fax +49 231 725 499 19 dortmund@peutz.de

Carmerstraße 5 10623 Berlin Tel. +49 30 310 172 16 Fax +49 30 310 172 40 berlin@peutz.de

Geschäftsführer:

Dipl.-Ing. Gerard Perquin Dr. ir. Martijn Vercammen Dipl.-Ing. Ferry Koopmans AG Düsseldorf HRB Nr. 22586 Ust-IdNr.: DE 119424700

Ust-IdNr.: DE 119424700 Steuer-Nr.: 106/5721/1489

Bankverbindungen:

Stadt-Sparkasse Düsseldorf Konto-Nr.: 220 241 94 BLZ 300 501 10 DE79300501100022024194 BIC: DUSSDEDDXXX

Niederlassungen:

Mook / Nimwegen, NL Zoetermeer / Den Haag, NL Groningen, NL Paris, F Lyon, F Leuven, B Sevilla. E

www.peutz.de

Inhaltsverzeichnis

1	Situation und Aufgabenstellung	3
2	Beurteilungsgrundlagen	4
	2.1 FFH-Richtlinie	4
	2.2 Kurzcharakteristik der Schutzgebiete	4
	2.2.1 DE-4209-302 - Lippeaue	4
	2.2.2 DE-4314-302 - Teilabschnitte Lippe- Unna, Hamm, Soest, Warendorf	5
	2.2.3 DE-4311-304 - Wälder bei Cappenberg	5
	2.2.4 DE-4311-301 - In den Kaempen, Im Mersche und Langerner Hufeisen	5
	2.3 Auswahl von Beurteilungspunkten	6
3	Vorgehensweise zur Ermittlung der Stickstoff- und Säuredeposition des Industrieareals newPark	9
	3.1 Abschätzung des Schadstoffausstoßes der newPark-Industrie	9
	3.2 Ermittlung des Schadstoffausstoßes des newPark-Verkehrs	11
	3.3 Zusatzbelastung durch trockene Depositionen	11
	3.4 Vorbelastung	12
	3.5 Critical Loads	13
	3.6 Summationsbetrachtung mit weiteren Plänen und Projekten	14
	3.7 Zusatzbelastung durch das Industrieareal newPark	16
	3.8 Schadensbegrenzungsmaßnahmen	17
	3.8.1 Entfall von düngebedingten Stickstoff- und Säureeinträgen durch die	4-
	Landwirtschaft	
	3.9 Ermittlung der Depositionsraten	
	3.9.1 Stickstoffdepositionsraten	
	3.9.2 Säuredepositionsraten	18
4	Ergebnisse der Depositionsberechnungen	19
	4.1 Stickstoffdeposition	19
	4.2 Säuredeposition	20
	4.3 Weitergehende Schadensbegrenzungsmaßnahmen	21
5	Zusammenfassung	22
6	Anlagenverzeichnis	24
7	Bearbeitungsgrundlagen, zitierte Normen und Richtlinien	25

1 Situation und Aufgabenstellung

Die Planung für das Industrieareal newPark Datteln ist eine Angebotsplanung. Mit der Fläche soll ein innovatives Angebot für flächenintensive industrielle Großvorhaben geschaffen werden. Anders als bei einer vorhabenbezogenen Planung ist nicht bekannt, welche Betriebe sich mit welchen Schadstoff emittierenden Anlagen auf welchen Teilflächen im newPark ansiedeln werden. Daher ist die Prognose der Schadstoffemissionen mit großen Schwierigkeiten verbunden, zumal bislang durch die Gesetzgebung und die Genehmigungsbehörden noch keine einheitlichen Vorgaben, Standards oder Vollzugshilfen entwickelt worden sind.

Aus diesem Grund musste eigens für newPark eine neue Vorgehensweise für eine Schadstoffimmissionsprognose und Luftschadstoffkontingentierung (Bericht C 5085-8 der Peutz Consult GmbH vom 21.06.2013) [4] entwickelt werden. Diese wurde im Februar und März 2013 mit den Fachbehörden (LANUV NRW, obere und untere Landschaftsbehörden) [5] abgestimmt und wurde von diesen als geeigneter Lösungsansatz eingestuft.

Die Schadstoffimmissionsprognose beinhaltet die Untersuchung der Fragestellung, ob newPark zusammen mit anderen Projekten durch Einträge von Schadstoffen aus den erwarteten newPark-Verkehren sowie aus der newPark-Industrie die benachbarten FFH-Gebiete erheblich beeinträchtigt.

Im Rahmen der vorliegenden Abschätzung von Schadstoffeinträgen werden die Schadstoffgruppen Stickstoffe und Säuren betrachtet.

2 Beurteilungsgrundlagen

2.1 FFH-Richtlinie

Die Flora-Fauna-Habitat-Richtlinie (Richtlinie 92/43/EWG des Rats vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie wild lebenden Tiere und Pflanzen) und die Vogelschutzrichtlinie bilden zusammen die Rechtsgrundlage für den europäischen Naturschutz.

Die Zielsetzung der Richtlinien ist es, alle für Europa typischen wild lebenden Arten und natürlichen Lebensräume in einem günstigen Erhaltungszustand zu bringen und somit die biologische Vielfalt in Europa zu gewährleisten. Die FFH-Schutzgebiete bilden zusammen mit den Gebieten der Vogelschutzrichtlinie das Netzwerk Natura 2000.

2.2 Kurzcharakteristik der Schutzgebiete

2.2.1 DE-4209-302 - Lippeaue

Nördlich des Projektgebietes und in einer Entfernung von mindestens 200 m zum Plangebiet liegt das FFH-Gebiet DE-4209-302 "Lippeaue". Das Gebiet umfasst die Lippeaue zwischen Unna und Dorsten. Dabei ist der Lauf der Lippe die zentrale Achse dieses großen, abwechslungsreichen und vielfältig gegliederten Gebietes, das trotz überwiegend intensiver Landwirtschaft und Gewässerregulierung noch zahlreiche Elemente der früheren Auenlandschaft aufweist. Neben einigen naturnahen Flussabschnitten ist die Lippeaue überwiegend durch ein naturnahes Relief geprägt.

Mehrfach sind noch Reste von Bruch-, Weichholz- und Hartholz- Auenwäldern vorhanden. Ebenso finden sich hier Altarme mit gut ausgeprägter Verlandungsvegetation bis hin zu Bruchwaldbeständen. Auch die in die Lippe mündenden Bachläufe sind teilweise naturnah erhalten. Neben Feuchtgrünlandflächen und Mähwiesen ist insbesondere an Dämmen und Böschungskanten an Lippe und Niederterrasse örtlich Magerrasenvegetation zu finden.

Selbst Dünenbildungen sind kleinflächig noch vorhanden. Das durch Hecken, Kopfbäume, Feldgehölze mit Altbäumen, Baumreihen und Einzelbäume reich strukturierte Gebiet vermittelt so in vielen Teilen das Bild der typischen münsterländischen Kulturlandschaft. In einem durch Bergsenkung vernässten Bereich zwischen Haltern, Marl und Lippramsdorf entwickeln sich großflächig Auenwälder, Röhrichte und weitere Verlandungsbestände [20].

2.2.2 DE-4314-302 - Teilabschnitte Lippe- Unna, Hamm, Soest, Warendorf

Altwässer mit ihrer Röhricht-, Schwimmblatt- und Unterwasservegetation und der Flußlauf mit seinen Ufergehölzen kennzeichnen diese Abschnitte der Lippe. Trotz der Lage inmitten einer von Industrie, Landwirtschaft und Siedlung beanspruchten Landschaft ist hier das ursprüngliche Lebensraummosaik eines Fließgewässermittellaufes noch an vielen Stellen erkennbar. Typische Uferstrukturen wie Steilabbrüche stellen wertvolle Nistmöglichkeiten z.B. für den Eisvogel und Uferschwalbe dar. Von herausragender Bedeutung ist die Lippe als Lebensraum für das Bachneunauge [20].

2.2.3 DE-4311-304 - Wälder bei Cappenberg

Großes Waldgebiet mit hohem Anteil an naturnahen Beständen der Eichen-Hainbuchenwälder sowie der Hainsimsen- und Waldmeister-Buchenwälder mit z.T. hohem Starkholzanteil von bis ca. 250 Jahren Alter. Die Wälder stocken auf ebenen bis leicht welligen, örtlich mit Geschiebelehm oder Flugsand überdeckten Kreidesandmergeln.

Das Gebiet wird von mehreren naturnahen Bachläufen durchzogen, die aus Quellmulden gespeist werden. Häufig werden diese von einem galerieartigen, naturnahen Auenwald begleitet. Die Bachkerbtäler sind z.T. schluchtartig bis zu 10 m tief. Neben Schlamm- und Kiesbänken im Bachgerinne verstärkt sich die strukturreiche Bachmorphologie häufig durch eine ausgeprägte Mäandrierung und die Ausbildung von örtlich bis 5 m hohen Steilufern [20].

2.2.4 DE-4311-301 - In den Kaempen, Im Mersche und Langerner Hufeisen

Inmitten der intensiv von Landwirtschaft, Industrie und Siedlung beanspruchten Landschaft prägen vielfältige Lebensräume das Bild der Lippeaue in diesen Naturschutzgebieten. Durch Auwaldrelikte, Feldgehölze, Hecken, Gebüsche und Kopfbäume wird das Grünland entlang des Flusses reich gegliedert.

Bachläufe mit teilweise naturnahem Verlauf und Altarme zeigen eine oftmals hervorragend ausgebildete Verlandungszonierung, die von Unterwasservegetation und Schwimmpflanzengesellschaften z. B. zu seggenreichen Igelkolbenbeständen und Schilfröhricht bis hin zu Weidenwald überleitet. An der Lippe selbst finden sich Weidengebüsche, Hochstaudenfluren und typische Gewässerstrukturen wie Uferabbrüche die wertvolle Nistmöglichkeiten für den Eisvogel darstellen [20].

2.3 Auswahl von Beurteilungspunkten

In unmittelbarer Nähe zum Plangebiet sowie in großen Teilen des gesamten Untersuchungsraumes sind mehrere FFH-Gebiete vorhanden. Insbesondere die in den FFH-Gebieten vorhandenen Lebensraumtypen limitieren die möglichen zukünftigen Emissionen und somit Immissionen des Industrieareals "newPark" Datteln.

Da weitere Vorhaben in der Nähe der Planungen zum Industrieareal "newPark" Datteln (E.on Kraftwerk Datteln 4, Trianel Kraftwerk Lünen und andere [12] bis [18]) ebenfalls auf diese Lebensräume innerhalb der FFH-Gebiete einwirken und hierzu bereits umfangreiche Untersuchungen zu Vorbelastungswerten und auch Summationsbeiträgen erfolgten, wird innerhalb der vorliegenden Luftschadstoffemissionskontingentierung auf die in [12] bis [18] festgelegten, insgesamt 64, Beurteilungspunkte (kurz BUP) zurückgegriffen (35 gemäß [12][15], 29 gemäß [13][16]). Von den insgesamt 64 Beurteilungspunkten sind 14 in Ihren Koordinaten, Vorbelastungen, Critical Loads und Zusatzbelastungen identisch, sodass 50 verschiedene Beurteilungspunkte verbleiben. Die Bezeichnungen der Beurteilungspunkte wurden dabei teilweise neu an unterschiedliche Beurteilungspunkte vergeben. So liegt zum Beispiel der BP_02 in [12] und [13] an unterschiedlichen Orten und in unterschiedlichen Lebensraumtypen, die Beurteilungspunkte C_1 bis C_11 sind in [12] und [13] identisch.

Um eine Vergleichbarkeit mit den Gutachten [12] bis [18] zu erhalten, werden die Bezeichnungen der Beurteilungspunkte, auch wenn sie doppelt vorkommen beibehalten. Zur Unterscheidung innerhalb des vorliegenden Berichtes werden die Beurteilungspunkte gemäß [12] in **Grün** und die Beurteilungspunkte gemäß [13] in **Blau** wiedergegeben. Die Lage dieser Beurteilungspunkte ist in Anlage 1 grafisch und in der folgenden Tabelle 2.1 wiedergegeben.

Tabelle 2.1: Beurteilungspunkte

Lfd.		hnung ilungs-		Lebensraumtyp (Code / Name)		UTM-	
Nr.	[12]	[13]		, ,	Koordin	aten 32U	
	FFH-Gebiet DE 4209-302 - Lippeaue						
1	BP_1		9190	Alte bodensaure Eichenwälder auf Sandebenen mit Quercus robur	385549	5727670	
2	BP_2		91F0	Hartholz-Auewälder mit Quercus robur, Ulmus laevis, Ulmus minor, Fraxinus excelsior	385621	5727045	
3	BP_3		91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	387772	5726127	
4	BP_4		91F0 Hartholz-Auewälder mit Quercus robur, Ulmus laevis, Ulmus minor, Fraxinus excelsior		388108	5726219	
5	BP_6		91E0*	Auenwälder mit Alnus glutinosa und Fraxinus	390802	5724432	

Lfd. Nr.	- 11			Lebensraumtyp (Code / Name)		TM- aten 32U
	[12]	[13]				
				excelsior		
6	BP_7		9190	Alte bodensaure Eichenwälder auf Sandebenen mit Quercus robur	390759	5724363
7	BP_7b		9110	Hainsimsen-Buchenwald	390733	5724197
8	BP_11		9160	Subatlantischer oder mitteleuropäischer Stieleichenwald oder Eichen-Hainbuchenwald	392888	5721986
9	BP_13		6430	Feuchte Hochstaudenfluren der planaren und montanen bis alpinen Stufe	393422	5721687
10	BP_14		6430	Feuchte Hochstaudenfluren der planaren und montanen bis alpinen Stufe	393660	5720709
11		BP_2	91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	390347	5724663
12		BP_3	9190	Alte bodensaure Eichenwälder auf Sandebenen mit Quercus robur	390716	5724376
13		BP_3b	9110	Hainsimsen-Buchenwald	390679	5724343
14	BP_9	BP_4	6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	392074	5723297
15		BP_6b	6430	Feuchte Hochstaudenfluren der planaren und montanen bis alpinen Stufe	392814	5722681
16	BP_12	BP_7	91F0	Hartholz-Auewälder mit Quercus robur, Ulmus laevis, Ulmus minor, Fraxinus excelsior	392978	5721943
17		BP_22	9160	Stermieren-Eichen-Hainbuchenwald	384228	5727937
18		BP_23	91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	390714	5724375
19		BP_25	9160	Stermieren-Eichen-Hainbuchenwald	392627	5722033
20		BP_26	9190	Alte bodensaure Eichenwälder auf Sandebenen mit Quercus robur	392807	5722135
21		BP_27	91F0	Hartholz-Auewälder mit Quercus robur, Ulmus laevis, Ulmus minor, Fraxinus excelsior	392935	5722377
22		BP_28	6430	Feuchte Hochstaudenfluren der planaren und montanen bis alpinen Stufe	393079	5721897
FF	H-Gebi	et DE 4	314-302	2 - Teilabschnitte Lippe - Unna, Hamm, Soe	st, Ware	ndorf
23	BP_18		91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	400194	5719557
24		BP_9	91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	394195	5720302
25		BP_13	91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	396831	5719874
FI	FH-Gebi	iet DE 4	311-30	1 - In den Kämpen, Im Marsche und Lange	rner Hufe	eisen
26	BP_19		91E0*	Auenwälder mit Alnus glutinosa und Fraxinus	399554	5719223

Lfd. Beurteilungs- punkt gemäß			Lebensraumtyp (Code / Name)		UTM- Koordinaten 32U		
	[12] [13]						
				excelsior			
27	BP_20		6430	Feuchte Hochstaudenfluren der planaren und montanen bis alpinen Stufe	400441	5719839	
28	BP_22		3150	Natürliche eutrophe Seen mit einer Vegetation des Magnopotamion oder Hydrocharition	400544	5719884	
29	BP_23		6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	401438	5720804	
30	BP_24		91F0	Hartholz-Auewälder mit Quercus robur, Ulmus laevis, Ulmus minor, Fraxinus excelsior	401177	5721260	
31		BP_16	6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	401070	5721063	
32		BP_30	91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	399486	5719353	
		FF	H-Geb	iet DE 4311-304 - Wälder bei Cappenberg			
33	BP_26		9110	Hainsimsen-Buchenwald	398310	5722027	
34	BP_27		9110	Hainsimsen-Buchenwald	398495	5722095	
35	BP_28		9110	Hainsimsen-Buchenwald	400065	5723335	
36	BP_30		9110	Hainsimsen-Buchenwald	399009	5725576	
37	BP_31		9160	Subatlantischer oder mitteleuropäischer Stieleichenwald oder Eichen-Hainbuchenwald	397006	5724885	
38		BP_21	9110	Hainsimsen-Buchenwald	398467	5722062	
39		BP_32	91E0*	Auenwälder mit Alnus glutinosa und Fraxinus excelsior	397832	5725105	
	FF	H-Gebi	et DE 4	l311-304 - Wälder bei Cappenberg (Bodenp	rofile)		
40	C_1	C_1	9160	Stermieren-Eichen-Hainbuchenwald	397052	5722359	
41	C_2	C_2	9130	Waldmeister-Buchenwald	397067	5722622	
42	C_3	C_3	9130	Waldmeister-Buchenwald	397142	5722611	
43	C_4	C_4	9130	Waldmeister-Buchenwald	397214	5722571	
44	C_5	C_5	9110	Hainsimsen-Buchenwald	398307	5722011	
45	C_6	C_6	9110	Hainsimsen-Buchenwald	399390	5723406	
46	C_7	C_7	9110	Hainsimsen-Buchenwald	399990	5723324	
47	C_8 BP_29	C_8	91E0*	Augnwälder mit Alnus glutinges und Fravinus		5723816	
48	C_9	C_9	9160	Stermieren-Eichen-Hainbuchenwald	397055	5724939	
49	C_10	C_10	9160	Stermieren-Eichen-Hainbuchenwald	397286	5725215	
50	C_11	C_11	9110	Hainsimsen-Buchenwald	397409	5725231	

3 Vorgehensweise zur Ermittlung der Stickstoff- und Säuredeposition des Industrieareals newPark

3.1 Abschätzung des Schadstoffausstoßes der newPark-Industrie

Ausgangspunkt für die Schadstoffprognose der Industrien im newPark sind die Industrien, die gemäß der Bedarfsanalyse der PROGNOS AG für eine Ansiedlung im newPark infrage kommen (Positivliste von Prognos) [6]. Die Positivliste beinhaltet "alle GreenTechproduzierenden und –anwendenden Industrien, Dienstleister und Forschungseinrichtungen sowie alle für den GreenTech-Bereich komplementären Industrien und Zulieferer" [6]. Außerdem wurden Betriebe der Abstandsklassen I und II ausgeschlossen.

Auf Grundlage der Bedarfsanalyse der PROGNOS AG [6], Daten des Umweltbundesamtes zum Thema Emissionen ausgewählter Luftschadstoffe nach Quellkategorien [7] sowie der Statistik der sozialversicherungspflichtig Beschäftigten nach Wirtschaftszweigen [8] wurden die voraussichtlich zu erwartenden Emissionen des Industrieareals newPark von Stickstoffoxiden NO_x berechnet als NO₂, Schwefeldioxid SO₂ und Ammoniak NH₃ ermittelt.

Der gewählte Berechnungsansatz ermittelt die Menge an emittierten Luftschadstoffen bezogen auf die Beschäftigten im verarbeitenden Gewerbe. Hierzu wurde zunächst die Anzahl der sozialversicherungspflichtig Beschäftigten in Deutschland im verarbeitenden Gewerbe anhand der Statistik der Bundesagentur für Arbeit ermittelt [8]. Demnach waren am 31.12.2012 6.565.322 Beschäftigte im verarbeitenden Gewerbe tätig.

In einem nächsten Schritt wurden die zu erwartenden Beschäftigtenzahlen im newPark im Jahr 2030 im best-case Fall auf Basis der Bedarfsanalyse der PROGNOS AG [6] ermittelt.

Im Bereich der Großindustrie stehen entsprechend der städtebaulichen Rahmenplanung voraussichtlich 84 ha Fläche zur Verfügung, im Bereich der Leichtindustrie sind es rund 50 ha. Laut der Bedarfsanalyse der PROGNOS AG [6] kann auf den Flächen für Großindustrie von einer Beschäftigtendichte von 40 Beschäftigten pro Hektar und im Bereich der Leichtindustrie von 60 Beschäftigten pro Hektar ausgegangen werden. Dies ergibt eine voraussichtliche Beschäftigtenzahl in den Bereichen Großindustrie und Leichtindustrie des Industrieareals newPark von insgesamt 6.300 Beschäftigten im Jahr 2030.

Die weitergehenden Berechnungen erfolgen unter Hinzuziehung der Daten des Umweltbundesamtes zu Emissionen ausgewählter Luftschadstoffe nach Quellkategorien [7]. Für die Berechnung relevant sind die Quellkategorien "verarbeitendes Gewerbe" und "Industrieprozesse". Demnach wurden im Jahr 2012 folgende Mengen emittiert:

Tabelle 3.1: Emissionen des verarbeiteten Gewerbes und aus Industrieprozessen 2012 [7]

Schadstoff	Emissionen in kg/Jahr
Stickoxide (NO _x /NO ₂)	170.600.000
Ammoniak (NH ₃)	12.600.000
Schwefeloxide (SO _x /SO ₂)	118.700.000

Die voraussichtlichen Emissionen des Industrieareals newPark berechnen sich im Folgenden aus dem Verhältnis der gesamten Emissionen des verarbeiteten Gewerbes und aus Industrieprozessen des Jahres 2012 mit der Anzahl der Beschäftigten in diesen Bereichen. Hieraus ergeben sich die durchschnittlichen Emissionen pro Beschäftigtem. Diese werden abschließend mit den prognostizierten maximalen Beschäftigten der Leicht- und Großindustrie des Industrieareals newPark multipliziert.

Hieraus folgt für die Emissionen des Industrieareals newPark für:

Stickstoffoxide:

170.600.000 kg/Jahr / 6.565.322 Beschäftigte = 25,985 kg/Jahr pro Beschäftigten 25,985 kg/a*Beschäftigten x 6.300 Beschäftigte newPark= **163.705,5 kg/a NOx-Emissionen**

Schwefeldioxid:

118.700.000 kg/Jahr / 6.565.322 Beschäftigte = 18,079 kg/a pro Beschäftigten 18,079 kg/a*Beschäftigten x 6.300 Beschäftigte newPark= **113.897,7 kg/a SO₂-Emissionen**

Ammoniak:

12.600.000 kg/Jahr / 6.565.322 Beschäftigte= 1,919 kg/a pro Beschäftigten 1,919 kg/a*Beschäftigten x 6.300 Beschäftigte newPark= **12.089,7** kg/a NH₃-Emissionen

Für das Industrieareal newPark ergibt sich daher insgesamt folgende Schadstofffracht in kg/Jahr:

Tabelle 3.2: Abgeschätzte maximale Schadstofffracht der Industrie im newPark

Schadstoff	Emissionen newPark in kg/Jahr
Stickoxide (NO _x /NO ₂)	163.705,5
Ammoniak (NH ₃)	12.089,7
Schwefeloxide (SO _x /SO ₂)	113.897,7

Aus den Daten des Umweltbundesamtes [7] ist zu erkennen, das die Emissionen der Luftschadstoffe Stickstoffdioxid NO₂, Schwefeldioxid SO₂ und Ammoniak NH₃ seit den neunziger Jahren des vergangenen Jahrhunderts sehr deutlich zurückgegangen sind. Es ist zu erwarten, dass sich dieser Trend, wenn auch möglicherweise in abgeschwächter Form, zukünftig weiter fortsetzten wird. Bis daher eine Vollbelegung des Industrieareals newPark im

Jahre 2030 erreicht ist, ist von deutlich geringeren Emissionen der anzusiedelnden Betriebe als nach dem heutigen Stand der Technik auszugehen.

3.2 Ermittlung des Schadstoffausstoßes des newPark-Verkehrs

Luftschadstoffemissionen des Kraftfahrzeugverkehrs unterliegen einem ständigen technischen Fortschritt, welcher durch Einführung neuer Abgasnormen und dem Austausch von alten zu neuen Fahrzeugen in der Fahrzeugflotte erfolgt. Die Zyklen sind hierbei gegenüber Emissionen aus Industrieanlagen sehr kurz, sodass für jedes Prognosejahr bis 2030 im Handbuch für Emissionsfaktoren (HBEFA 3.1) neue Emissionsfaktoren vorliegen. Diese sind in der Regel geringer als die Emissionsfaktoren des Vorjahres. Bei gleicher Anzahl von Fahrzeugen und gleichem Lkw-Anteil auf einer Straße nehmen somit die Emissionen im Laufe der Jahre automatisch ab.

Grundlage für die Berechnung der Schadstoffemissionen der im Plangebiet verlaufenden Straßen, sind Verkehrsmengen gemäß des Verkehrsgutachtens [9]. Hierin liegen Verkehrsmengen für zwei Entwicklungsszenarien auf Grundlage von Prognosen zur Beschäftigtenentwicklung im Plangebiet [9] als Zusatzbelastungen (Verkehrszunahme nur durch newPark) und Gesamtbelastung (Gesamtverkehrsaufkommen) vor.

1. Bauabschnitt (frühestens ab 2014):

33% der Gesamtfläche entwickelt, bis zu 3.000 Arbeitsplätze, Zusatzverkehr 6.900 Kfz/ 24h Verteilung der Verkehrsströme in Datteln über die B 474n Ortsumgehung Datteln, Anschlussstelle 'newPark' an die K12 mit einem Kreisverkehr

2. Bauabschnitt (frühestens ab 2018):

100% der Gesamtfläche entwickelt, bis zu 9.000 Arbeitsplätze, Zusatzverkehr 20.000 Kfz/ 24h Verteilung der Verkehrsströme über die B 474n mit südlichem Anschluss an die BAB, Anschlussstelle 'newPark' an die K12 mit einem Kreisverkehr

3.3 Zusatzbelastung durch trockene Depositionen

Zusätzlich zu der dargestellten Ermittlung der Immissionszusatzbelastung des Industrieareals newPark wurde der Schadstoffeintrag, bedingt durch die trockene Deposition von NO, NO₂ und NH₃ sowie SO₂ ermittelt. Um den Stickstoffeintrag zu ermitteln, wird aus der trockenen Deposition von NO, NO₂ und NH₃ der jeweilige molare Anteil von Stickstoff berechnet. Dementsprechend ergibt sich der Gesamtstickstoffeintrag aus der Summe der Stickstoffanteile.

Für den Säureeintrag wird aus der trockenen Deposition von NO, NO₂ und NH₃ der jeweilige molare Anteil von Stickstoff und für Säure zusätzlich die Deposition von SO₂ berechnet. Dementsprechend ergibt sich der Gesamtsäureeintrag aus der Summe der Stickstoff- und Schwefelanteile.

Die Zusatzbelastung durch Stickstoff- und Säureeinträge ist in den Anlagen 3.1 und 4.1 tabellarisch mit der Depositionsgeschwindigkeit für die Oberflächenkategorie Mesoskala und in den Anlagen 3.2 und 4.2 für die Depositionsgeschwindigkeit für die Oberflächenkategorie Wald dargestellt.

Im Rahmen weiterer, detaillierterer Berechnungen sind darüber hinaus noch die nasse Deposition sowie landnutzungsspezifische Depositionsgeschwindigkeiten im Detail zu berücksichtigen. Hierdurch können sich insbesondere in Waldflächen höhere Stickstoff- und Säureeintragsraten ergeben.

3.4 Vorbelastung

Zur Beurteilung der Auswirkungen zusätzlicher Stoffeinträge in FFH-Gebiete ist die Ermittlung der vorhandenen Vorbelastung erforderlich.

Das Umweltbundesamt (UBA) stellt in diesem Zusammenhang interaktive Karten der Stickstoffdeposition zur Verfügung, aus denen die Hintergrundbelastung der Stickstoffgesamt-depositionsfracht landnutzungsklassenspezifisch in einer Auflösung von 1 x 1 km² entnommen werden kann [10].

Die Karten basieren auf Daten aus dem UBA-Forschungsprojekt "MAPESI" (Modelling of Air Pollutants and EcoSystem Impact) [11] und stellen eine Kombination aus modellierten und gemessenen Werten der gesamten Deposition des Jahres 2007 (trockene, feuchte und nasse Deposition) dar. Daten für Folgejahre liegen aktuell nicht vor, eine für 2012 vorgesehene Aktualisierung der Datengrundlage fand nicht statt.

Auf der zum UBA-Forschungsprojekt "MAPESI" zugehörigen Daten-DVD liegen solche Vorbelastungsdaten ebenfalls für die Säuredeposition vor.

Im Rahmen von Genehmigungsverfahren zu weiteren Projekten im Umfeld des geplanten Industrieparks newPark Datteln (Trianel Steinkohlekraftwerk Lünen, E.ON Steinkohlekraftwerk Datteln Block 4, Heizkraftwerk Herne Block 5) wurden Immissionsprognosen und FFH-Verträglichskeitsprüfungen erstellt.

In Teilgutachten zu diesen Vorhaben [12][13] wurden für 50 Beurteilungspunkte für verschiedene, auch prioritäre, Lebensraumtypen innerhalb der durch diese Vorhaben und den

Industriepark newPark betroffenen FFH-Gebiete Stickstoff- und Säuredepositionsvorbelastungen in Abhängigkeit des jeweils vorliegenden Landnutzungstyps aus den Daten des Umweltbundesamtes [10][11] ermittelt. Diese wurden im Rahmen der vorliegenden Untersuchung herangezogen und sind in Anlage 1 dargestellt. Die Beurteilungspunkte aus [13] sind zur Unterscheidung mit einem zusätzlichen "n" gekennzeichnet.

3.5 Critical Loads

Die Beurteilung der Stickstoffdeposition erfolgt anhand der lebensraumspezifischen Critical Loads. Auf Basis der für die jeweiligen Lebensraumtypen anzusetzenden Belastbarkeitsschwellen (Critical Limits) zur Erreichung eines günstigen Erhaltungszieles des Lebensraums wurden in [12] und [13] Berechnungen des jeweiligen Critical Loads für jeden Lebensraumtyp (Beurteilungspunkt) für versauernde und eutrophierende Stoffeinträge auf Basis des jeweiligen Critical Limits und Erhaltungszustandes durchgeführt.

Diese bilden zusammen mit der ermittelten Vorbelastung die Grundlage zur Beurteilung der Auswirkungen der zusätzlichen Stoffeinträge des Industrieareals newPark sowie der im Rahmen der Summation zu berücksichtigenden weiteren Vorhaben auf die Lebensraumtypen innerhalb betroffener FFH-Gebiete.

Um eine Vergleichbarkeit aller hier in Summation zu betrachtenden Vorhaben zu gewährleisten, wird auch für das Industrieareal newPark auf die in [12] und [13] dargestellten Werte zur Vorbelastung und den Critical Loads zurückgegriffen. Diese sind in den Tabellen der Anlagen 3 und 4 dargestellt.

Da die Vorbelastung für Stickstoffeinträge die Critical Loads bereits deutlich übersteigt, ist zur Beurteilung der Stickstoffeinträge die Irrelevanzschwelle von 3% der unteren Schwelle des jeweiligen Critical Loads heranzuziehen. Abweichend von der früher praktizierten Vorgehensweise, dass die Irrelevanzschwelle von 3% je Vorhaben anzusetzen ist, dürfen gemäß aktueller Rechtssprechung des Oberverwaltungsgerichts NRW [19] die 3% des Critical Loads in der Summe aus allen Stickstoff eintragenden Quellen seit Ausweisung des Schutzgebietes nicht überschritten werden.

Somit sind neben den Stickstoffdepositionen aus dem Vorhaben "newPark" auch alle Stickstoffeinträge anderer bereits bestehender sowie in der Planung so weit fortgeschrittener Vorhaben, dass für deren Stickstoffeinträge prüffähige Unterlagen eingereicht wurden, zu berücksichtigen. Hierbei spielt die Reihenfolge der Vorhaben in der Planung auf die Beurteilung der 3%-Irrelevanzschwelle eine wichtige Rolle, da nachfolgende Projekte alle vorangegangenen Vorhaben berücksichtigen müssen. Weiterhin dürfen nachfolgende Vorhaben nicht unmöglich gemacht werden.

3.6 Summationsbetrachtung mit weiteren Plänen und Projekten

Nach § 34 Abs. 1 BNatSchG und Art. 6 Abs. 3 der FFH-Richtline müssen andere Pläne und Projekte, die eine kumulative Wirkung mit den hier untersuchten Vorhaben haben könnten, berücksichtigt werden.

Aufgrund der aktuellen Rechtsprechung [19] sind zur Beurteilung der Auswirkungen von versauernden und eutrophierenden Stoffeinträgen in Lebensräume innerhalb von FFH-Gebieten alle Vorhaben in Summation zu berücksichtigen, welche seit Festlegung des FFH-Gebietes (hier Dezember 2004) fertiggestellt wurden, oder aber in ihrer Planung soweit fortgeschritten sind, dass prüffähige Unterlagen vorliegen.

Bisher ist davon ausgegangen worden, dass in dem UBA-Datensatz zur vorhandenen Vorbelastung durch Stickstoffeinträge mit Stand 2007 alle Vorhaben berücksichtigt sind, welche bis 2007 genehmigt bzw. fertiggestellt sind. Für die Summationsbeiträge zu Stickstoff- und Säureeinträgen anderer Vorhaben waren daher nur solche Vorhaben zusätzlich zu berücksichtigen, welche nach 2007 fertiggestellt wurden oder für die prüffähige Unterlagen eingereicht wurden.

Auf einem Besprechungstermin beim LANUV NRW zur Vertiefung der hier angewendeten Methodik der Luftschadstoffkontingentierung am 22.05.2014 wurde seitens des LANUV NRW angemerkt, das als Beginn der Summationsprüfung der Zeitpunkt der Unterschutzstellung des FFH-Gebietes, hier also Dezember 2004) und nicht das Jahr 2007 anzusetzen sei [26]. Dies ist auch aktuelle Auffassung des Kreises Recklinghausen vom 24.04.2014, wie sie in [25] dokumentiert ist.

Hieraus folgte die Notwendigkeit einer Abfrage, welche Pläne und Projekte zwischen 12/2004 und 12/2006 genehmigt und realisiert wurden. Diese Abfrage und Prüfung erfolgte durch den TÜV Nord im Zusammenhang mit den Untersuchungen zum E.ON Kraftwerk Datteln 4 [25]. Um auch hier eine einheitliche Datengrundlage der aktuell im Raum Datteln geplanten Projekte beizubehalten, wird im Folgenden auf die in [25] dargestellten zusätzlichen Summationsprojekte und deren Beiträge zurückgegriffen. Eine eigene erneute Behördenabfrage der Projekte bei den benachbarten Kreisen erfolgt daher nicht.

Die vorliegenden Vorbelastungsdaten für versauernde und eutrophierende Stoffeinträge haben den Stand 2007 und berücksichtigen neben den Stoffeinträgen aus dem Straßenverkehr, der Landwirtschaft, aus dem Ferntransport usw. auch Immissionen aus gewerblichen und industriellen Anlagen.

Für die Beiträge durch das geplante Industrieareal newPark erfolgten Immissions- und Depositionsberechnungen auf Grundlage eines Emissionsszenarios, welches gemäß der in Kapitel 2 beschrieben Vorgehensweise ermittelt wurde.

Insgesamt wurden folgende Vorhaben im Rahmen der Summationsbetrachtung berücksichtigt:

- Trianel Kraftwerk Lünen
- E.ON Kraftwerk Datteln Block 4 sowie Blöcke 1 bis 3
- HKW Herne der STEAG GmbH
- Erweiterung Aurubis AG Lünen
- Biomassekraftwerk Lünen
- Tierhaltungsanlage (1) Karl Heinz Grae, Waltrop
- Tierhaltungsanlage (3) Theo Surmann, Waltrop
- Tierhaltungsanlage (11) Klaus Eickenscheidt, Waltrop
- Tierhaltungsanlage (19) D&H Olfen

Die Liste der zu berücksichtigenden Summationsprojekte wird im weiteren Genehmigungsverfahren fortlaufend aktualisiert und vervollständigt.

In einem Vermerk des LANUV NRW zur Abgrenzung des Untersuchungsgebietes im Rahmen einer FFH-Verträglichkeitsprüfung wird "Im Sinne einer belastbaren und konservativen Konvention und in Anbetracht dessen, dass nicht immer alle Gase gleichzeitig zu betrachten sein müssen, schlägt das LANUV vor, in der Ausbreitungsrechnung die unteren Werte als Abschneidekriterium zu wählen. Damit liegen die Abschneidewerte für den Stickstoffeintrag bei 0,3 kg N / (ha*a) und für den Säureeintrag bei 30 eq (N+S) / (ha*a). Ausbreitungsrechnungen werden für deutlich kleinere Werte unglaubwürdig, da Möglichkeiten zur Validierung der Modelle in der Praxis entfallen. [27]"

Weiter heißt es in [27] "Seitens einer naturschutzfachlichen Bewertung ergeben sich darüber hinaus allerdings weitere Anforderungen: Die Bagatellschwelle von 3 % des Critical Load für Stickstoffeinträge liegt bei den stickstoffempfindlichsten Gebieten in Nordrhein-Westfalen (Schwermetallrasen) mit einem Critical Load von 4 kg N / (ha*a) bei 0,12 kg N / (ha*a). Vor dem Hintergrund dieser Anforderung erscheint es notwendig, für die Stickstoffdeposition auf ein Abschneidekriterium von 0,10 kg N / (ha*a) abzustellen. Ein Abschneidekriterium in der Größenordnung darunter kommt aufgrund der obigen Ausführungen keinesfalls mehr infrage. Hinsichtlich der vorgeschlagenen 30 eq (N+S) / (ha*a) liegt kein Hinweis vor, der Veranlassung dazugibt, diesen Wert ebenfalls nach unten zu korrigieren."

In einer aktuellen Studie zur "Untersuchung und Bewertung von straßenverkehrsbedingten Nährstoffeinträgen in empfindliche Biotope" [28] werden Abschneidekriterien für zusätzliche Stickstoffeinträge von 0,3 kg N / (ha*a) angegeben. Diese Größe leitet sich unter anderem daraus ab, das sich Zusatzbelastungen in dieser Größe nicht mehr valide bestimmen lassen und ferner keine beobachtbaren Effekte auf Vegetationsbestände haben.

Ein aktuelles Urteil des Bundesverwaltungsgerichtes [29] über den Neubau der Bundesautobahn A 49 hat nun das Abschneidekriterium von 0,3 kg N / (ha*a) für zusätzliche Stickstoffeinträge bestätigt. "Zusatzbelastungen durch Stickstoffeinträge von 0,3 kg N / (ha*a) bzw. 3% eines CL (Critical Loads) dürfen dabei [bei der Summationsbetrachtung] regelmäßig unberücksichtigt bleiben."

Die oben genannten und zitierten Studien und Urteile beziehen sich dabei zwar auf Stickstoff- und Säureeinträge aus dem Straßenverkehr, die hierin getroffenen Aussagen sind jedoch auch ohne Weiteres auch auf anlagenbezogene Vorhaben übertragbar. Dies rührt insbesondere daher, das bei den zitierten Studien und Urteilen auch anlagenbezogene Summationsbeiträge betrachtet wurden.

Bei den in Anlage 3 (Stickstoffdepositionen) und Anlage 4 (Säuredepositionen) dargestellten Summationsbeiträgen anderer Vorhaben an den betrachteten lebensraumspezifischen Beurteilungspunkten in den FFH-Gebieten werden informativ alle bekannten Einträge dargestellt. In die Summationsbetrachtung gehen aber nur solche Vorhaben ein, welche an einem Beurteilungspunkt mehr als 0,3 kg N/(ha*a) bzw. 30 eq (N+S) / (ha*a) eintragen.

Die durch die Abschaltung der Blöcke 1 bis 3 des Kraftwerkes Datteln entfallenden Stickstoff- und Säureeinträge werden im Rahmen der Summationsbetrachtung mindernd berücksichtigt. Die resultierenden Gesamteinträge werden abschließend den entsprechenden Critical Loads gegenübergestellt.

3.7 Zusatzbelastung durch das Industrieareal newPark

Die Abschneidekriterien von 0,3 kg N/(ha*a) für Stickstoffeinträge bzw. 30 eq (N+S) / (ha*a) für Säureeinträge werden gemäß der "Untersuchung und Bewertung von straßenverkehrsbedingten Nährstoffeinträgen in empfindliche Biotope" [28] auf einzelne Vorhaben bzw. Anlagen bezogen.

Für das Industrieareal newPark ist von einer Ansiedlung einer Vielzahl unterschiedlicher Vorhaben bzw. Anlagen auszugehen. Auf Grundlage vorangegangener Berechnungen zu den Stickstoff- und Säureeinträgen ist davon auszugehen, dass einzelne Anlagen innerhalb des Industrieareals newPark jeweils die Abschneidekriterien bzw. Bagatellschwellen für sich betrachtet einhalten.

Vorsorglich werden im Folgenden die Auswirkungen des gesamten Industrieareals newPark in Summe auf die Beurteilungspunkte in den FFH-Gebieten betrachtet. Vorsorglich werden im Rahmen dieser Betrachtungen auch bereits Schadensbegrenzungsmaßnahmen untersucht.

3.8 Schadensbegrenzungsmaßnahmen

3.8.1 Entfall von düngebedingten Stickstoff- und Säureeinträgen durch die Landwirtschaft

In [21] wurden die düngebedingten Stickstoffdepositionen durch die Landwirtschaft aus dem Luftpfad auf den in Anlage 2 dargestellten Flächen in unmittelbarer Nähe zu den Beurteilungspunkten BP_2n, BP_3n, BP_3bn, BP_6, BP_7, BP_7b und BP_23n innerhalb des FFH-Gebietes "Lippeauen" ermittelt. Dabei ist der Stickstoffeintrag durch den Wasserpfad noch nicht berücksichtigt. Dieser soll auf Basis der hydrogeologischen Untersuchungen später noch erfasst werden.

Es ist vonseiten der newPark GmbH beabsichtigt, die Stickstoffdeposition aus dem newPark durch Schadensbegrenzungsmaßnahmen zu kompensieren. Dazu soll die Düngung und damit die bisherige intensive landwirtschaftliche Nutzung auf den in Anlage 2 dargestellten Flächen aufgegeben werden.

Daher können die Immissionsbeiträge von newPark um die durch die Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen" bedingten Reduzierungen an den Beurteilungspunkten BP_2n, BP_3n, BP_3bn, BP_6, BP_7, BP 7b und BP 23n entsprechend gemindert werden.

3.9 Ermittlung der Depositionsraten

3.9.1 Stickstoffdepositionsraten

Die Stickstoffdepositionsraten in [kg N / ha*a] werden im Rahmen der vorliegenden Abschätzung aus den Konzentrationen der stickstoffhaltigen Schadstoffe Stickstoffdioxid NO_2 Stickstoffmonoxid NO und Ammoniak NH_3 in einer bodennahen Schicht (üblicherweise 1,5 Meter) ermittelt.

Hierzu wird die am Immissionsort vorliegende Konzentration mit der für den jeweiligen Luftschadstoff und die jeweilige Oberflächenkategorie zugehörigen Depostionsgeschwindigkeit multipliziert und in kg N / ha*a umgerechnet.

Die Depositionsgeschwindigkeit eines Luftschadstoffes unterscheidet sich dabei in Abhängigkeit der Oberflächenkategorie, da z.B. in einem Wald durch Auskämmeffekte der Bäume mehr Schadstoffe deponiert werden als z.B. über einer Wiese. In Waldgebieten liegt daher z.B. für Ammoniak NH₃ eine höhere Depositionsgeschwindigkeit und somit höhere Depositionsrate vor. Für Stickstoffdioxid NO₂ und Stickstoffmonoxid NO sind die Depositionsgeschwindigkeiten für die Oberflächenkategorie Mesoskala und Wald identisch. Die

Oberflächenkategorie "Mesoskala" stellt ein großräumiges Mittel über alle Oberflächenkategorien (Wasser, Gras, landwirtschaftliche Nutzfläche, Wald und städtisches Gebiet) dar.

In der vorliegenden Untersuchung wurden die Stickstoff-Depositionsraten für die Oberflächenkategorien "Mesoskala" und "Wald" berücksichtigt (siehe Anlage 3). Hieraus ergeben sich gemäß VDI 3782, Blatt 5 [3] folgende Depositionsgeschwindigkeiten:

Tabelle 3.3: Depositionsgeschwindigkeiten v_d gemäß VDI 3782, Blatt 5 [3]

Stoff	Mesoskala	Wald		
Stickstoffmonoxid NO	0,05 cm/s			
Stickstoffdioxid NO ₂	0,3 cm/s			
Ammoniak NH₃	1,2 cm/s	2,0 cm/s		

Es wird nur die trockene Deposition berechnet. Stoffeinträge durch feuchte und nasse Deposition sind hier vernachlässigbar gering. Die Berechnung der trockenen Deposition erfolgt gemäß folgender Formel:

N-Deposition [kg / ha*a] = c * v_d * Stöchiometriefaktor * 3,1536

mit:

Deposition: Stoffeintrag in [kg / ha*a]

c: Konzentration des Stoffes als Jahresmittelwert am Immissionsort

in [µg/m³]

v_d: Depositionsgeschwindigkeit in Abhängigkeit der

Oberflächenkategorie für die trockene Deposition in [cm/s]

Stöchiometriefaktor: relativer Gewichtsanteil vom elementaren Stickstoff an der

jeweiligen Verbindung:

Stickstoffmonoxid NO = 0,4666Stickstoffdioxid NO₂ = 0,3043Ammoniak NH₃ = 0,8235

3,1536: Faktor zur Umrechnung der Einheiten nach [kg / ha*a]

3.9.2 Säuredepositionsraten

Die Stickstoffdepositionsraten in Säureäquivalenten [eq (N+S) / ha*a] werden im Rahmen des vorliegenden Grobscreenings aus den Konzentrationen der stickstoff- und schwefelhaltigen Schadstoffe Stickstoffdioxid NO₂ Stickstoffmonoxid NO sowie Ammoniak NH₃ und Schwefeldioxid SO₂ in einer bodennahen Schicht (üblicherweise 1,5 Meter) ermittelt.

Auch für Schwefeldioxid gilt eine von der Oberflächenkategorie abhängige Depostionsgeschwindigkeit:

Tabelle 3.4: Depositionsgeschwindigkeit v_d gemäß VDI 3782, Blatt 5 [3]

Stoff	Mesoskala	Wald
Schwefeldioxid SO ₂	1,0 cm/s	1,25 cm/s

Die Berechnung der trockenen Deposition erfolgt gemäß folgender Formel:

Säure-Deposition [eq (N+S)] = c [NO, NO₂, NH₃] * v_d * Stöchiometriefaktor) * 1000 / 14 + c [SO₂] * v_d * Stöchiometriefaktor) * 1000 / 16

mit:

Deposition: Säureeintrag in [eq (N+S) / ha*a]

c: Konzentration des Stoffes als Jahresmittelwert am Immissionsort

in [µg/m³]

v_d: Depositionsgeschwindigkeit in Abhängigkeit der

Oberflächenkategorie für die trockene Deposition in [cm/s]

Stöchiometriefaktor: relativer Gewichtsanteil vom elementaren Stickstoff an der

jeweiligen Verbindung:

Stickstoffmonoxid NO = 0,4666 Stickstoffdioxid NO₂ = 0,3043 Ammoniak NH₃ = 0,8235 Schwefeldioxid SO₂ = 0,5

4 Ergebnisse der Depositionsberechnungen

4.1 Stickstoffdeposition

Die Stickstoffdepositionen für eutrophierenden Stickstoffeintrag wurden für 50 Beurteilungspunkte innerhalb der betrachteten FFH-Gebiete für die Emissionen der newPark-Industrien und -verkehre (siehe Kapitel 3 und Anlage 3) in Verbindung mit der Summation durch andere Vorhaben für verschiedene Lebensräume innerhalb der FFH-Gebiete und unter Berücksichtigung der in Kapitel 3.8 beschriebenen Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen" berechnet.

Die Ergebnisse zeigen bei vorhandener Überschreitung des jeweiligen Critical Loads für Stickstoffdepositionen durch die Vorbelastung eine Einhaltung der 3%-Irrelevanzschwelle in Summe für alle 50 Beurteilungspunkte für die Oberflächenkategorie Mesoskala (siehe Anlage 3.1) und die Oberflächenkategorie Wald (siehe Anlage 3.2). Somit liegt an keinem Beurteilungspunkt ein relevanter Eintrag von Stickstoff aus dem Immissionen des Industrieareals newPark Datteln vor.

4.2 Säuredeposition

Die Säuredepositionen für versauernde Stickstoff- und Schwefeleinträge wurden für 50 Beurteilungspunkte innerhalb der betrachteten FFH-Gebiete für die Emissionen der newPark-Industrien und -verkehre (siehe Kapitel 3 und Anlage 4) in Verbindung mit der Summation durch andere Vorhaben für verschiedene Lebensräume innerhalb der FFH-Gebiete und unter Berücksichtigung der in Kapitel 3.8 beschriebenen Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen" berechnet.

Die Vorbelastung in Bezug auf versauernde Stickstoff- und Schwefeleinträge liegt an 14 Beurteilungspunkten in den betrachteten FFH-Gebieten noch unterhalb der jeweiligen Critical Loads. An 36 Beurteilungspunkten liegen bereits durch die Vorbelastung Überschreitungen der Critical Loads vor.

An 15 der 50 Beurteilungspunkte liegen für die Oberflächenkategorie Wald (siehe Anlage 4.2) Säureeinträge durch newPark mit der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen" und durch Summationsbeiträge vor, welche mehr als 3% und bis zu 10,3% Anteil am Critical Load haben.

Jedoch liegen nur an neun Beurteilungspunkten Zusatzeinträge durch das Industrieareal newPark Datteln von mehr als 30 eq (N+S) / ha*a vor, sodass an diesen neun Beurteilungspunkten 6, 7, 7b, 3, 3bn, 23n, C9, C10 und C11) weitergehende Schadensbegrenzungsmaßnahmen zur Vermeidung erheblicher Versauerungsrisiken notwendig sind. Von diesen neun Beurteilungspunkten liegen zwei Beurteilungspunkte BP_6 (8,3%) und BP 23n (6,2%) (FFH-Gebiet Lippeauen) in prioritären Lebensräumen.

Säureeinträge von bis zu 30 eg (N+S) / ha*a liegen innerhalb des Abschneidekriteriums.

4.3 Weitergehende Schadensbegrenzungsmaßnahmen

Auf Grundlage, der in den beiden vorangegangenen Kapiteln 4.1 und 4.2 und den Anlagen 3.2 und 4.2 dargestellten Ergebnisse wurden, durch ÖKO-DATA Straußberg weitere Arten und der notwendige Umfang von zusätzlichen Schadensbegrenzungsmaßnahmen zur Vermeidung erheblicher Beeinträchtigungen der FFH-Lebensraumtypen durch versauernde und eutrophierende Luftschadstoffeinträge aus dem newPark Datteln ermittelt [30].

Da durch eutrophierende Luftschadstoffeinträge aus dem newPark Datteln keine erheblichen Beeinträchtigungen zu erwarten sind, beziehend sich die weitergehenden Schadensbegrenzungsmaßnahmen auf Minderungen der versauernden Einträge.

Für die verbleibenden neun Beurteilungspunkte 6, 7, 7b, 3, 3bn, 23n, C9, C10 und C11 sind dies, zusätzlich zu dem Düngemittelverzicht, ein Mix aus einer Reduzierung der vorhabenbedingten Emissionen durch newPark Datteln um 9,1%, ein Nutzungsverzicht von Waldflächen durch Verzicht auf Holzentnahme sowie die Ausbringung von Kalk.

Die notwendigen Maßnahmen und die hieraus resultierenden Kosten sind in [30] detailliert beschrieben.

Unter Anwendung dieser weitergehenden Schadensbegrenzungsmaßnahmen zusätzlich zu dem bereits berücksichtigten Entfall von düngebedingten Stickstoff- und Säureeinträgen durch die Landwirtschaft [21] sind keine erheblichen Beeinträchtigungen der FFH-Lebensraumtypen in den betroffenenen FFH-Gebieten zu erwarten.

5 Zusammenfassung

Die Planung für das Industrieareal newPark Datteln ist eine Angebotsplanung. Mit der Fläche soll ein innovatives Angebot für flächenintensive industrielle Großvorhaben geschaffen werden. Anders als bei einer vorhabenbezogenen Planung ist nicht bekannt, welche Betriebe sich mit welchen Schadstoff emittierenden Anlagen auf welchen Teilflächen im newPark ansiedeln werden. Daher ist die Prognose der Schadstoffemissionen mit großen Schwierigkeiten verbunden, zumal bislang durch die Gesetzgebung und die Genehmigungsbehörden noch keine einheitlichen Vorgaben, Standards oder Vollzugshilfen entwickelt worden sind.

Aus diesem Grund musste eigens für newPark eine neue Vorgehensweise für eine Schadstoffimmissionsprognose und Luftschadstoffkontingentierung entwickelt werden. Diese wurde im Februar und März 2013 mit den Fachbehörden (LANUV NRW, obere und untere Landschaftsbehörden) abgestimmt und wurde von diesen als geeigneter Lösungsansatz eingestuft.

Die Schadstoffimmissionsprognose beinhaltet die Untersuchung der Fragestellung, ob newPark zusammen mit anderen Projekten durch Einträge von Schadstoffen aus den erwarteten newPark-Verkehren sowie aus der newPark-Industrie die benachbarten FFH-Gebiete erheblich beeinträchtigt. Die Prognose basiert dabei auf einem "Worst Case"-Szenario.

Im Rahmen der vorliegenden Abschätzung von Schadstoffeinträgen wurden die Schadstoffgruppen Stickstoffe und Säuren betrachtet.

Die Stickstoffdepositionen für eutrophierenden Stickstoffeintrag wurden für 50 Beurteilungspunkte innerhalb der betrachteten FFH-Gebiete für die Emissionen der newPark-Industrien und -verkehre in Verbindung mit der Summation durch andere Vorhaben für verschiedene Lebensräume innerhalb der FFH-Gebiete und unter Berücksichtigung der in Kapitel 3.8 beschriebenen Schadensbegrenzungsmaßnahmen berechnet.

Unter diesen Voraussetzungen sind durch eutrophierende Luftschadstoffeinträge aus dem newPark Datteln keine erheblichen Beeinträchtigungen zu erwarten.

Für versauernde Luftschadstoffeinträge sind weitergehende Schadensbegrenzungsmaßnahmen erforderlich. Für die verbleibenden betroffenen neun Beurteilungspunkte 6, 7, 7b, 3, 3bn, 23n C9 und C11 sind dies ein Mix aus einer Reduzierung der vorhabenbedingten Emissionen durch newPark Datteln um 9,1%, ein Nutzungsverzicht von Waldflächen durch Verzicht auf Holzentnahme sowie die Ausbringung von Kalk.

Die notwendigen Maßnahmen und die hieraus resultierenden Kosten sind in [30] detailliert beschrieben.

Unter Anwendung dieser weitergehenden Schadensbegrenzungsmaßnahmen zusätzlich zu dem bereits berücksichtigten Entfall von düngebedingten Stickstoff- und Säureeinträgen durch die Landwirtschaft [21] sind keine erheblichen Beeinträchtigungen der FFH-Lebensraumtypen in den betroffenenen FFH-Gebieten zu erwarten.

Unter Berücksichtigung aller Schadensbegrenzungsmaßnahmen, insbesondere der Reduzierung der vorhabenbedingten Emissionen durch newPark Datteln um 9,1% ergeben sich abschließend folgenden maximalen Schadstofffrachten, welche durch das Industrieareal newPark Datteln emittiert werden können.

Tabelle 7.1: Maximale Schadstofffracht der Industrie im newPark

Schadstoff	Emissionen newPark in kg/Jahr
Stickoxide (NO _x /NO ₂)	163.705,5 * 0,909 = 148.808,3
Ammoniak (NH ₃)	12.089,7 * 0,909 = 10.989,5
Schwefeloxide (SO _x /SO ₂)	113.897,7 * 0,909 = 103.533,0

Dieser Bericht besteht aus 23 Seiten und 4 Anlagen.

Peutz Consult GmbH

i.V. Dipl.-Ing. Mark Bless

i.A. Dipl.-Ing. Oliver Streuber

6 Anlagenverzeichnis

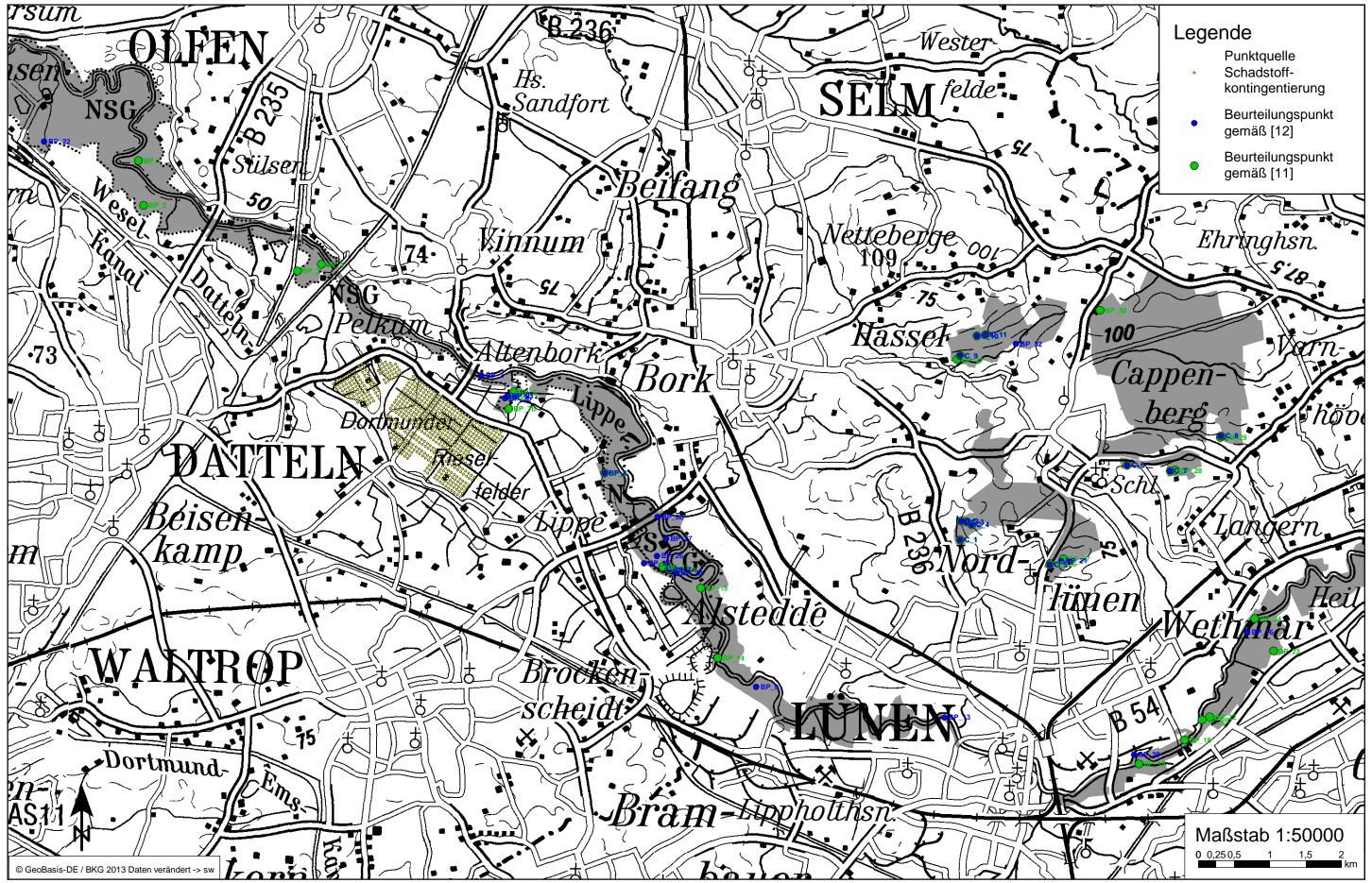
- Anlage 1 Lageplan "newPark Datteln" mit Kennzeichnung umliegender FFH-Gebiete sowie Beurteilungspunkten von Summationsprojekten
- Anlage 2 Düngebedingte Stickstoffdeposition aus der Landwirtschaft als Zusatzdeposition
- Anlage 3 Abschätzung der Stickstoffdeposition durch das Industrieareal newPark in FFH-Gebiete unter Berücksichtigung von Summationsprojekten und der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen"
- Anlage 4 Abschätzung der Säuredeposition durch das Industrieareal newPark in FFH-Gebiete unter Berücksichtigung von Summationsprojekten und der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen"

7 Bearbeitungsgrundlagen, zitierte Normen und Richtlinien

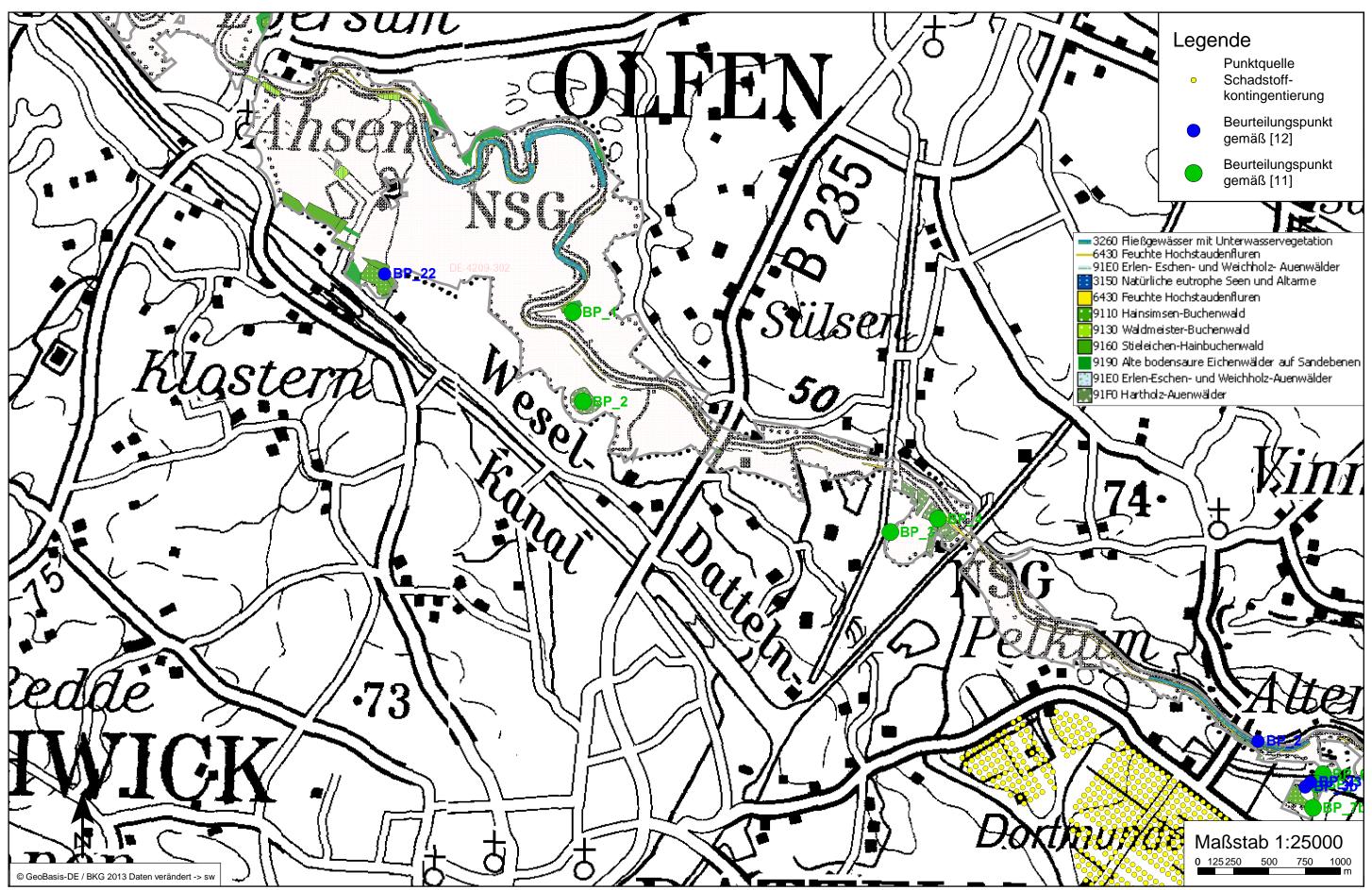
Titel	/ Beschreibung / Bemerkung		Kat.	Datum
[1]	BlmSchG Bundes-Immissionsschutzgesetz	Gesetz zum Schutz vor schäd- lichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge	G	Aktuelle Fassung
[2]	TA Luft Erste AVwV zum Bundes-Im- missionsschutzgesetz, technische Anleitung zur Reinhaltung der Luft	Gemeinsames Ministerialblatt, S. 511	VV	24.07.2002
[3]	VDI 3782 Blatt 5 Umweltmeteorologie - Atmosphärische Ausbreitungsmodelle - Depositionsparameter	Kommission Reinhaltung der Luft	RIL	April 2006
[4]	Vorgehensweise für eine Immissionsprognose und Luftschadstoffkontingentierung für das Industrieareal "newPark" in Datteln	Bericht C 5085-8 der Peutz Consult GmbH	Lit	21.06.2013
[5]	Ergebnisprotokoll zur Abstimmung des Schadstoffkontingentierungs- modells mit dem LNAUV NRW	newPark GmbH / LANUV NRW	Lit	20.03.2013
[6]	Kosten-Nutzen-Analyse für die Flächenentwicklung des Großvorhabens newPark. Bedarfsanalyse	Prognos AG	Lit	2012
[7]	Daten des Umweltbundesamtes zum Thema Emissionen aus- gewählter Luftschadstoffe nach Quellkategorien	http://www.umweltbundesamt. de/sites/default/files/medien/38 4/bilder/dateien/3_tab_emi- ausgew-luftschadst_2014-07- 03.pdf	Lit.	03.07.2014
[8]	Statistik der Sozialversicherungs- pflichtig Beschäftigten nach Wirt- schaftszweigen (WZ 2008) am 31.12.2012 der Bundesagentur für Arbeit	https://statistik.arbeitsagentur.d e/nn_31966/SiteGlobals/Forms /Rubrikensuche/Rubrikensuch e_Form.html? view=processForm&resourceId =210368&input_=&pageLocale =de&topicId=746698&year_mo nth=201312&year_month.GRO UP=1&search=Suchen	Lit.	2013
[9]	Verkehrsuntersuchung newPark Datteln; Entwurf des Schluss- berichtes	Brilon, Bondzio, Weiser Ingenieurgesellschaft für Verkehrswesen mbH	Lit.	April 2013
[10]	Vorbelastungsdaten Stickstoff TA Luft Nr. 4.8 - Genehmigungsver- fahren -	http://gis.uba.de/website/depo1 /index.htm	Р	Stand 2007

/ Beschreibung / Bemerkung		Kat.	Datum
Erfassung, Prognose und Be-	Umweltbundesamt; Builtjes	Lit.	Juni 2009
•	u.a.		
	¥		
	OKO-DATA Straußberg	Lit	06.08.2012
*			
•			
Schadstoffeinträge aus dem SKW			
Lünen (TKL) in den FFH-Gebieten			
"Lippeaue", "Lippe-Unna, Hamm,			
Soest, Warendorf", "In den			
Kämpen, Im Mersche, Langerner			
Hufeisen" und "Wälder bei			
Cappenberg"			
Teilgutachten zur FFH-	ÖKO-DATA Straußberg	Lit	23.09.2013
Verträglichkeitsuntersuchung eu-			
trophierender und versauernder			
Schadstoffeinträge aus dem KW			
Datteln in den FFH-Gebieten			
"Lippeaue", "Lippe-Unna, Hamm,			
Soest, Warendorf", "In den			
Immissionsprognose für Luft-	Müller-BBM GmbH Köln; zur	Lit.	06.08.2012
schadstoffe zum Trianel-Kraftwerk	Verfügung gestellt durch den		
Lünen			
Immissionsprognose für Luft-	Müller-BBM GmbH Köln; zur	Lit.	02.04.2012
schadstoffe zum E.ON-Kraftwerk	Verfügung gestellt durch den		
Datteln	Auftraggeber		
Fachgutachten zu bestehenden	Kreis Coesfeld; zur Verfügung	Lit.	Diverse Jahre
Betrieben im Kreis Coesfeld	gestellt durch den Auftrag-		
	geber		
Angaben zu bestehenden Be-	Kreis Unna; zur Verfügung	Lit.	Diverse Jahre
trieben im Kreis Unna	gestellt durch den Auftrag-		
	geber		
Planfeststellungsunterlagen zum		Lit.	20.01.2011
Neubau B 474n - Ortsumgehung	gestellt durch den Auftrag-		
Datteln	geber		
		Lit.	02.12.2011
8 D 58/08.AK	Nordrheinwestfalen		
Fachinformationssystem der FFH-	http://www.naturschutz-	Lit.	Stand:
	Contract Constitution		F-1
und EG-Vogelschutzgebiete in	fachinformationssysteme-		Februar 2011
	Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland Teilgutachten zur FFH-Verträglichkeitsuntersuchung eutrophierender und versauernder Schadstoffeinträge aus dem SKW Lünen (TKL) in den FFH-Gebieten "Lippeaue", "Lippe-Unna, Hamm, Soest, Warendorf", "In den Kämpen, Im Mersche, Langerner Hufeisen" und "Wälder bei Cappenberg" Teilgutachten zur FFH-Verträglichkeitsuntersuchung eutrophierender und versauernder Schadstoffeinträge aus dem KW Datteln in den FFH-Gebieten "Lippeaue", "Lippe-Unna, Hamm, Soest, Warendorf", "In den Kämpen, Im Mersche, Langerner Hufeisen" und "Wälder bei Cappenberg" Immissionsprognose für Luftschadstoffe zum Trianel-Kraftwerk Lünen Immissionsprognose für Luftschadstoffe zum E.ON-Kraftwerk Datteln Fachgutachten zu bestehenden Betrieben im Kreis Coesfeld Angaben zu bestehenden Betrieben im Kreis Unna Planfeststellungsunterlagen zum Neubau B 474n - Ortsumgehung Datteln "Trianel-Urteil" Aktenzeichen 8 D 58/08.AK Fachinformationssystem der FFH-	Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland Teilgutachten zur FFH- Verträglichkeitsuntersuchung eutrophierender und versauernder Schadstoffeinträge aus dem SKW Lünen (TKL) in den FFH-Gebieten "Lippeaue", "Lippe-Unna, Hamm, Soest, Warendorf", "In den Kämpen, Im Mersche, Langerner Hufeisen" und "Wälder bei Cappenberg" Teilgutachten zur FFH- Verträglichkeitsuntersuchung eutrophierender und versauernder Schadstoffeinträge aus dem KW Datteln in den FFH-Gebieten "Lippeaue", "Lippe-Unna, Hamm, Soest, Warendorf", "In den Kämpen, Im Mersche, Langerner Hufeisen" und "Wälder bei Cappenberg" Immissionsprognose für Luftschadstoffe zum Trianel-Kraftwerk Lünen Immissionsprognose für Luftschadstoffe zum E.ON-Kraftwerk Datteln Pachgutachten zu bestehenden Betrieben im Kreis Coesfeld Betrieben im Kreis Unna Planfeststellungsunterlagen zum Neubau B 474n - Ortsumgehung Datteln "Trianel-Urteil" Aktenzeichen 8 D 58/08.AK Fachinformationssystem der FFH- Impissionsprognostem der FFH- Immissionsprognose für Luftspeber im Kreis Unna Umweltbundesamt; Builtjes u.a. ÜKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Straußberg ÖKO-DATA Str	Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland Teilgutachten zur FFH- Verträglichkeitsuntersuchung eutrophierender und versauernder Schadstoffeinträge aus dem SKW Lünen (TKL) in den FFH-Gebieten "Lippeauer", "Lippe-Unna, Hamm, Soest, Warendorf", "In den Kämpen, Im Mersche, Langerner Hufeisen" und "Wälder bei Cappenberg" Teilgutachten zur FFH- Verträglichkeitsuntersuchung eutrophierender und versauernder Schadstoffeinträge aus dem KW Datteln in den FFH-Gebieten "Lippeaue", "Lippe-Unna, Hamm, Soest, Warendorf", "In den Kämpen, Im Mersche, Langerner Hufeisen" und "Wälder bei Cappenberg" Immissionsprognose für Luftschadstoffe zum Trianel-Kraftwerk Lünen Auftraggeber Immissionsprognose für Luftschadstoffe zum E.ON-Kraftwerk Verfügung gestellt durch den Auftrageber Fachgutachten zu bestehenden Betrieben im Kreis Coesfeld gestellt durch den Auftraggeber Angaben zu bestehenden Betrieben im Kreis Unna gestellt durch den Auftraggeber Planfeststellungsunterlagen zum Neubau B 474n - Ortsumgehung Datteln "Trianel-Urteil" Aktenzeichen Oberverwaltungsgericht Lit. Nordrheinwestfalen Fachinformationssystem der FFH- http://www.naturschutz- Lit.

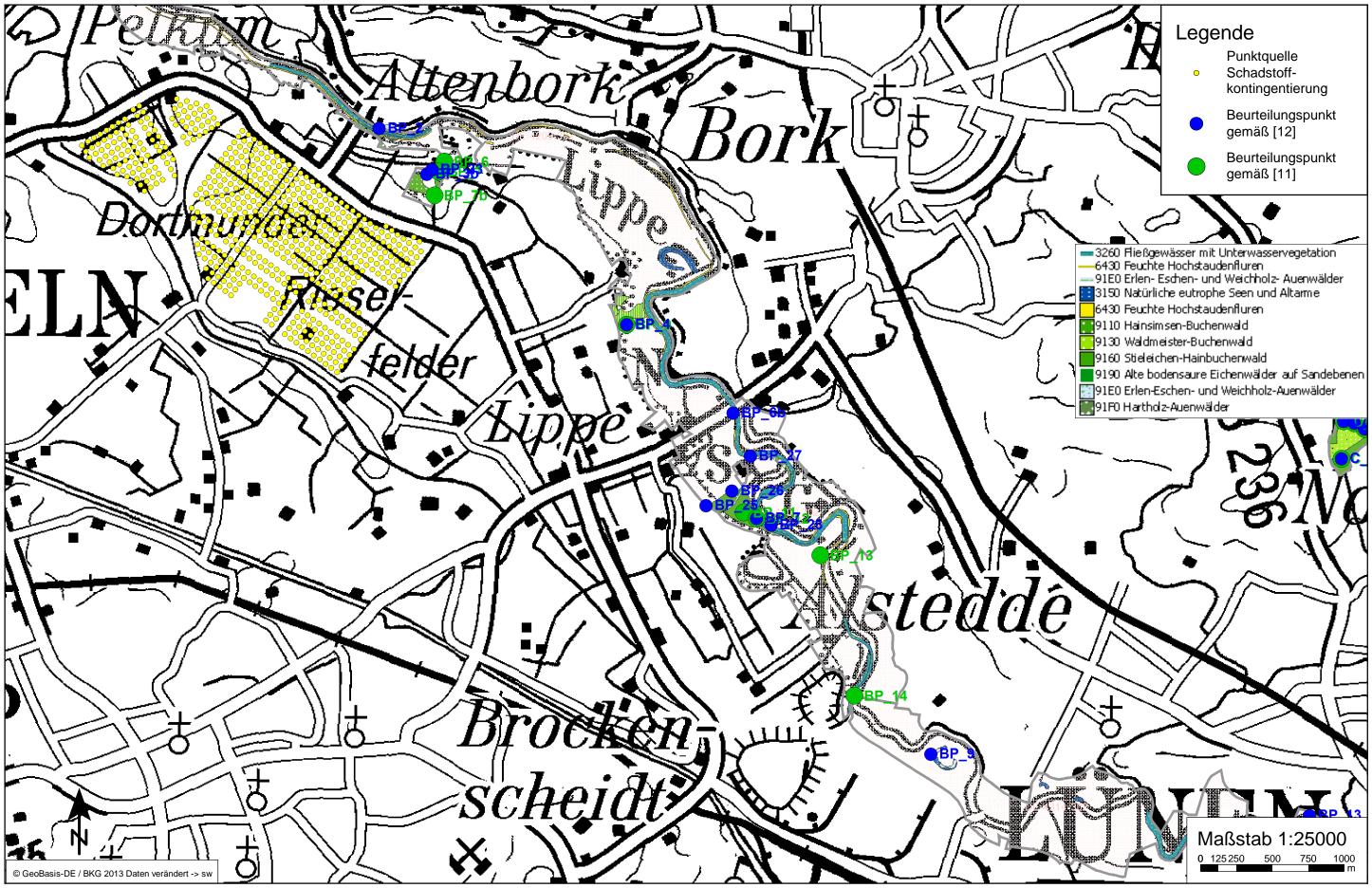
Titel	/ Beschreibung / Bemerkung		Kat.	Datum
[21]	Industriepark newPark in DatteIn –	Ingenieurbüro Lohmeyer	Lit.	Juni 2013
	Düngebedingte Stickstoff-	GmbH & Co. KG		
	depositionen aus der Landwirt-			
	schaft			
[22]	Ermittlung von Stickstoff- und	Dr. Winfried Straub, Dr. Heike	Lit.	März 2013
	Säureeinträgen in Wäldern mit	Hebbinghaus, Andreas Sowa,		
	Lagrange'schen Ausbreitungs-	Dr. Sabine Wurzler; LANUV		
	modellen: Vergleich unterschied-	NRW; Fachzeitschrift Im-		
	licher Berechnungsmethoden	missionsschutz 01/13		
[23]	Ermittlung der Stickstoff- und	Notiz Nr. M87090/31	Lit.	11.11.2013
	Säuredeposition durch die	Müller-BBM GmbH für		
	Emissionen eines im April 2011	E.ON Kraftwerke GmbH		
	genehmigten neuen Konverters			
	(TBRC-Anlage) der Aurubis AG in			
	Lünen			
[24]	Ergebnisse der Stickstoff- und	Notiz Nr. M87090/32	Lit.	12.11.2013
	Säuredepositionen durch die	Müller-BBM GmbH für		
	Emissionen des Kraftwerkes	E.ON Kraftwerke GmbH		
	Datteln, Block 4 und des be-			
	stehenden Kraftwerkes Datteln,			
	Block 1-3 sowie des Kohlekraft-			
	werkes der Trianel Kohlekraftwerk			
	Lünen GmbH & Co. KG und des			
	geplanten Kohlekraftwerkes in			
	Herne der STEAG GmbH			
[25]	FFH-Verträglichkeitsuntersuchung	Kieler Institut für Landschafts-	Lit.	06.05.2014
	für den vorhabenbezogenen Be-	ökologie und TÜV Nord		
	bauungsplan (Nr. 105a) der Stadt	Umweltschutz GmbH & Co.		
	Datteln; Ergänzende Be-	KG		
	trachtungen im Ergebnis der			
	Auswertung der Stellungnahmen			
	aus der Beteiligung der			
	Öffentlichkeit nach § 3 Abs. 2			
	BauGB und der Behörden nach §			
	4 Abs. 2 Bau GB			
[26]	Protokoll des Termins beim	Peutz Consult GmbH	Lit.	27.05.2014
	LANUV NRW vom 22.05.2013			
[27]	Abschneidekriterien zur Fest-	Vermerk, Landesamt für Natur,	Lit.	18.06.2012
	legung des Untersuchungs-	Umwelt und Verbraucher-		
	gebietes	schutz		

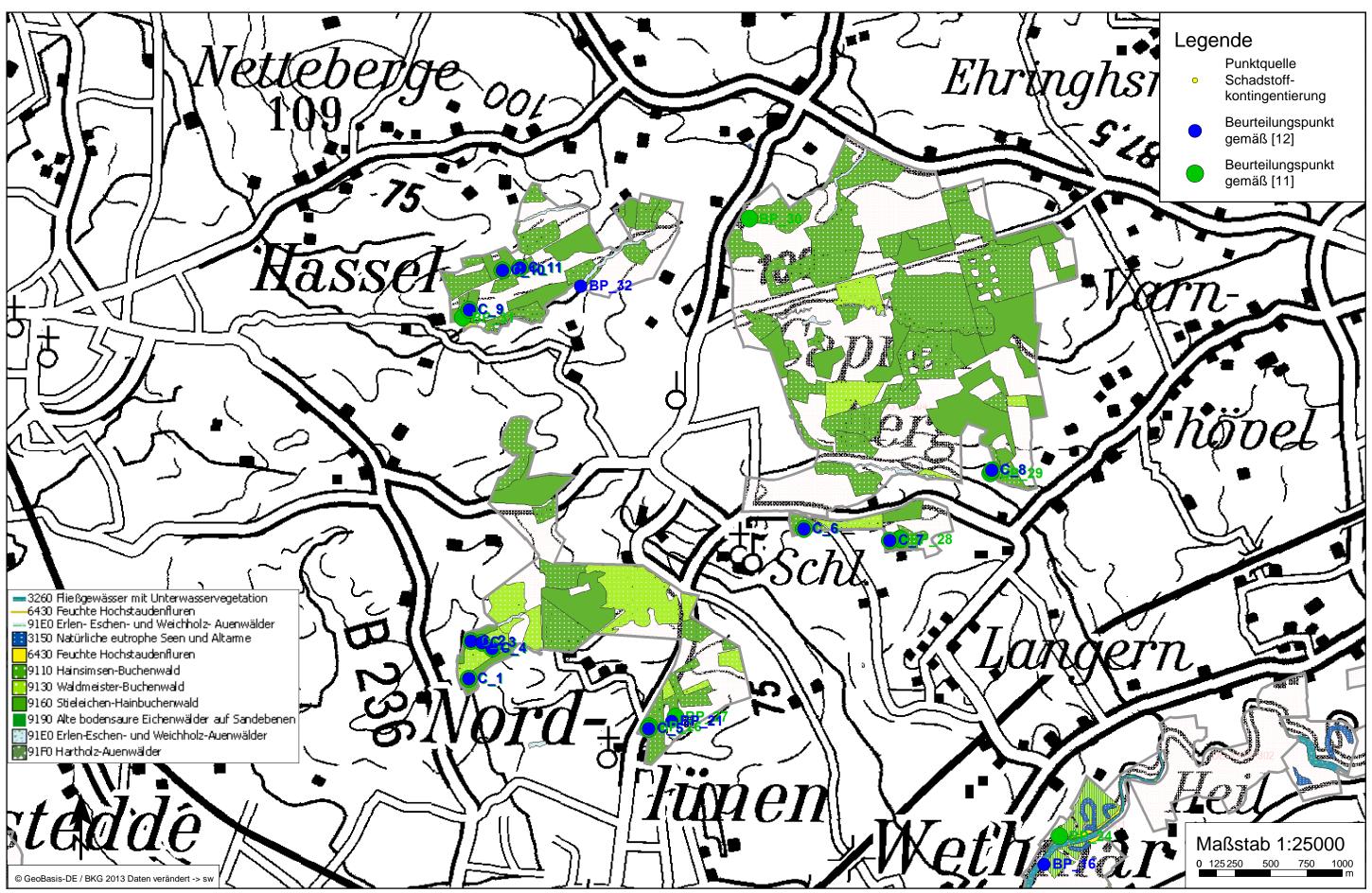

Titel	/ Beschreibung / Bemerkung		Kat.	Datum
[28]	Untersuchung und Bewertung von straßenverkehrbedingten Nährstoffeinträgen in empfindliche Biotope. Bericht zum FE-Vorhaben 84.0102/2009 der Bundesanstalt für Straßenwesen, Forschung Straßenbau und Straßenverkehrstechnik Band 1099	Balla, S.; Uhl, R.; Schlutow, A; Lorentz, H.; Förster, M.; Becker, C.; Müller-Pfannen- stiel, K.; Lüttmann, J.; Scheuschner, Th.; Kiebel, A.; Düring, I. Und Herzog, W.	Lit.	November 2013
[29]	Urteil des 9. Senats des BVerwG Aktenzeichen 9 A 25/12	Bundesverwaltungsgericht	Lit.	23.04.2014
[30]	Ermittlung von Art und Umfang von Schadensbegrenzungsmaßnahmen zur Vermeidung erheblicher Beeinträchtigungen von FFH-Lebensraumtypen durch versauernde und eutrophierende Luftschadstoffeinträge aus dem newPark Datteln	ÖKO-DATA Straußberg	Lit.	15.12.2014

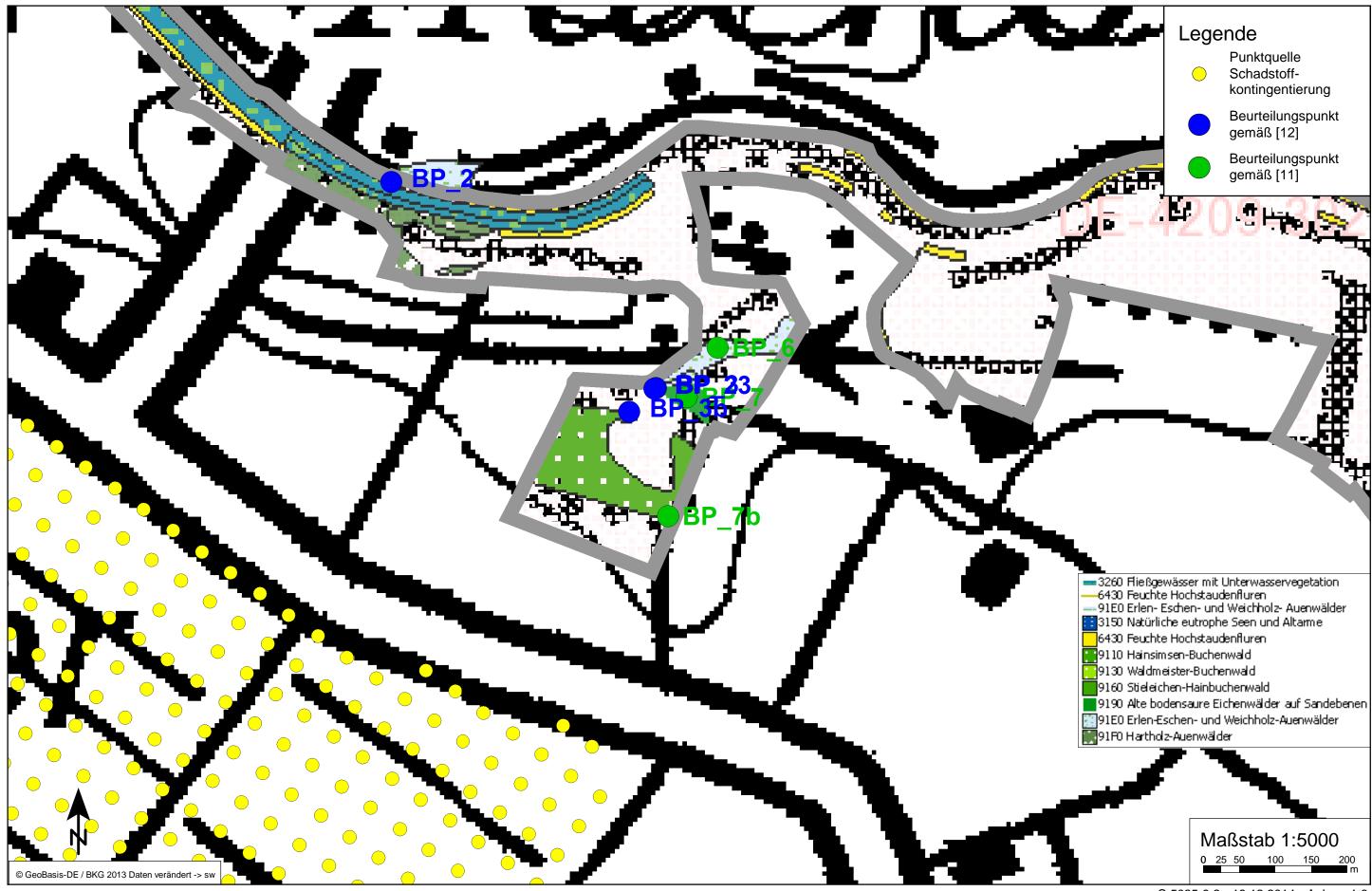
Kategorien:

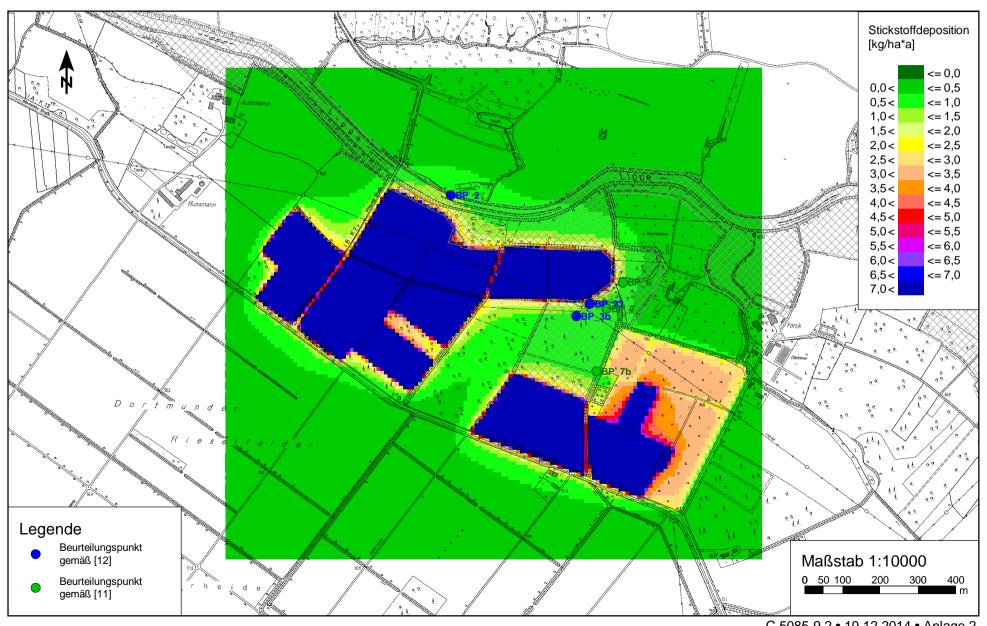

G V VV Gesetz Verordnung Verwaltungsvorschrift Runderlass N RIL Lit P Norm Richtlinie

Buch, Aufsatz, Bericht Planunterlagen / Betriebsangaben RdErl.









Düngebedingte Stickstoffdeposition aus der Landwirtschaft als Zusatzdeposition

Abschätzung der Stickstoffdeposition durch das Industrieareal newPark in FFH-Gebiete unter Berücksichtigung von Summationsprojekten und der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen"

rteilungs- ounkt:	Lebens- raumtyp:	Vorbelastung: [kg/ha*a]	CLnutN: [kg/ha*a]	Vorbelastung > CLnutN?	KW Lünen TKL [kg/ha*a]	HKW Herne Block 5 [kg/ha*a]	KW Datteln Block 4 [kg/ha*a]	KW Datteln Block 1-3 [kg/ha*a]	Tierhaltung Nr. 1 [kg/ha*a]	Nr. 3 [kg/ha*a]	Nr. 11 [kg/ha*a]	Tierhaltung Nr. 19 [kg/ha*a]	BMKW Lünen [kg/ha*a]	Aurubis AG Lünen [kg/ha*a]	Summations projekte Gesamt (nur Anteile >0,3) [kg/ha*a]	Düngebedingte N-Deposition (Nur NH3) [kg/ha*a]	Verkehr newPark [kg/ha*a]	Industrie newPark [kg/ha*a]	Summe newPark + Summations projekte: [kg/ha*a]	Anteil newPark am CLnutN ohne Schadensbegren zung: [%]		unteil Summe am CLnutN: [%]	Überschreit 3% Schwell Summatio
BP_1	9190	37,4	16,2	Ja	0,008	0,048	0,044	-0,036	FFH-Gebiet DE k.A	4209-302 - L k.A	ippeaue k.A	k.A	k.A	k.A	-0,036	0,000	0,041	0,029	0,034	0,4%	0,4%	0,2%	Nein
BP_2	91F0	37,1	23,8	Ja	0,014	0,050	0,040	-0,040	k.A	k.A	k.A	k.A	k.A	k.A	-0,040	0,000	0,046	0,029	0,035	0,3%	0,3%	0,1%	Nein
BP_3 BP 4	91E0* 91F0	37,1 37.6	25,2 23.8	Ja Ja	0,009	0,063 0.059	0,085	-0,036 -0.035	k.A 0.089	k.A 0.109	k.A 0.070	k.A 0.010	k.A 0.015	k.A k.A	-0,036 -0.035	0,000	0,134 0,140	0,065	0,163 0,170	0,8%	0,8%	0,6%	Nein Nein
BP_4 BP 6	91F0*	37,6	23,8	Ja Ja	0,010	0,059	0,083	-0,035	0,089 k.A	0,109 k.A	0,070 k.A	0,010 k.A	0,015 k.A	k.A	-0,035	-0,910	0,140	0,065	-0,250	3.5%	-0.9%	-1,2%	Nein
BP 7	9190	37,2	17.6	Ja	0,023	0,077	0,112	-0,062	k.A	k.A	k.A	k.A	k.A	k.A	-0,062	-0,710	0,228	0,506	-0,038	4,2%	0,1%	-0,2%	Neir
3P_7b	9110	37,2	16,0	Ja	0,031	0,077	0,112	-0,062	k.A	k.A	k.A	k.A	k.A	k.A	-0,062	-0,880	0,299	0,537	-0,106	5,2%	-0,3%	-0,7%	Neir
BP_9	6510	29,7	49,2	Nein	0,011	0,084	0,122	-0,061	k.A	k.A	k.A	k.A	k.A	k.A	-0,061	0,000	0,086	0,165	0,190	0,5%	0,5%	0,4%	Nei
BP_11 BP_12	9160 91F0	36,5 36,5	18,8 22,7	Ja	0,021	0,092 0,092	0,123	-0,073	k.A	k.A	k.A	k.A	k.A	k.A	-0,073	0,000 0,000	0,043	0,070	0,040 0,038	0,6%	0,6%	0,2% 0,2%	Nei
3P_12 3P_13	6430	36,5	29,2	Ja Ja	0,027	0,092	0,126 0,120	-0,072 -0,070	0,266 k.A	0,045 k.A	0,182 k.A	0,004 k.A	0,018 k.A	k.A k.A	-0,072 -0,070	0,000	0,040 0,034	0,070 0,070	0,038	0,5%	0,5%	0,2%	Nei Nei
3P_14	6430	31,9	29,2	Ja	0,108	0,007	0,120	-0,059	k.A	k.A	k.A	k.A	k.A	k.A	-0,059	0,000	0,025	0,070	0,034	0,3%	0,3%	0,1%	Nei
3P_2n	91E0*	37,6	18,6	Ja	0,018	0,075	0,103	-0,063	0,017	0,071	0,016	0,052	0,009	k.A	-0,063	-1,070	0,284	0,537	-0,312	4,4%	-1,3%	-1,7%	Nei
3P_3n	9190	37,2	16,9	Ja	0,023	0,077	0,116	-0,064	0,025	0,089	0,026	0,030	0,008	k.A	-0,064	-1,260	0,232	0,537	-0,555	4,6%	-2,9%	-3,3%	Nei
P_3bn P_6bn	9110 6430	37,2 29.7	15,8 29.2	Ja Ja	0,023 k.A	0,077 k.A	0,112 k.A	-0,062 k.A	0,025 k.A	0,089 k.A	0,024 k.A	0,032 k A	0,008 k.A	k.A k.A	-0,062 0.000	-0,810 0.000	0,246 0.046	0,542 0.106	-0,084 0.152	5,0% 0.5%	-0,1% 0.5%	-0,5% 0,5%	Nei Nei
P_6001 P 22n	9160	37,1	19,4	Ja	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	0,000	0,000	0,046	0,106	0,152	0,3%	0,3%	0,3%	Nei Nei
P 23n	91E0*	37,2	22,2	Ja	0,023	0,075	0,112	-0,062	0,025	0,089	0,026	0.030	0,008	k.A	-0,062	-1,260	0,232	0,537	-0,553	3,5%	-2,2%	-2,5%	Nei
P_25n	9160	36,5	18,8	Ja	0,009	0,092	0,123	-0,073	0,197	0,054	0,258	0,004	0,020	k.A	-0,073	0,000	0,052	0,106	0,085	0,8%	0,8%	0,4%	Nei
P_26n	9190	36,5	18,7	Ja	0,020	0,085	0,127	-0,073	0,174	0,054	0,196	0,005	0,023	k.A	-0,073	0,000	0,049	0,106	0,082	0,8%	0,8%	0,4%	Nei
P_27n	91F0 6430	36,5	23,8	Ja	0,033	0,090	0,127	-0,069	0,145	0,065	0,174	0,005	0,020	k.A	-0,069	0,000	0,043	0,074	0,048	0,5%	0,5%	0,2%	Nei
P_28n	6430	36,6	29,2	Ja	k.A	k.A	k.A FFH-Ge	k.A biet DE 4314-30	k.A 12 - Teilabschn	k.A itte Lippe - U	k.A Inna, Hamm, S	k.A Soest, Warendo	k.A	k.A	0,000	0,000	0,039	0,070	0,109	0,4%	0,4%	0,4%	Ne
3P 18	91E0*	35,5	19,3	Ja	0,100	0,071	0.079	-0.034	k.A	k.A	k.A	k.A	k.A	k.A	-0,034	0,000	0,006	0,029	0.001	0.2%	0.2%	0.0%	Nei
3P_9n	91E0*	35,6	19,1	Ja	0,319	0,093	0,096	-0,052	k.A	k.A	k.A	k.A	k.A	0,011	0,267	0,000	0,019	0,065	0,351	0,4%	0,4%	1,8%	Nei
IP_13n	91E0*	35,9	19,3	Ja	0,193	0,081	0,077	-0,042 biet DE 4311-3	k.A	k.A	k.A	k.A	k.A	0,060	-0,042	0,000	0,009	0,065	0,032	0,4%	0,4%	0,2%	Nei
3P 19	91E0*	35.7	19.3	Ja	0.119	0.070	0.066	-0.033	k.A	npen, Im Mar k.A	sche und Lan k.A	gerner Hufeiser k.A	k.A	k.A	-0.033	0.000	0.007	0.029	0.003	0.2%	0.2%	0.0%	Nei
3P 20	6430	31,9	29,2	Ja	0,095	0,072	0,079	-0,035	k.A	k.A	k.A	k.A	k.A	k.A	-0,035	0.000	0,006	0,029	0,000	0,1%	0,1%	0,0%	Nei
3P_22	3150	31,9	36,8	Nein	0,095	0,072	0,081	-0,035	k.A	k.A	k.A	k.A	k.A	k.A	-0,035	0,000	0,005	0,029	-0,001	0,1%	0,1%	0,0%	Nei
3P_23	6510	29,3	38,2	Nein	0,099	0,073	0,085	-0,039	k.A	k.A	k.A	k.A	k.A	k.A	-0,039	0,000	0,005	0,029	-0,005	0,1%	0,1%	0,0%	Nei
3P_24 3P_16n	91F0 6510	36,3 29,3	26,7	Ja	0,099	0,075 0,071	0,092	-0,039 -0,040	k.A	k.A k.A	k.A	k.A	k.A	k.A 0,081	-0,039 -0,040	0,000	0,005	0,029	-0,005 -0,005	0,1% 0,1%	0,1%	0,0%	Nei
P_16n P_30n	91E0*	35,7	49,2 20,8	Nein Ja	0,098 k.A	0,071 k.A	0,092 k.A	-0,040 k.A	k.A k.A	k.A	k.A k.A	k.A k.A	k.A k.A	0,081 k.A	0,000	0,000	0,006 0,005	0,029	0,034	0,1%	0,1% 0,2%	0,0%	Nei Nei
_0011	0120	00,1	20,0	00	N. r	ic. i	NLF V	FFH-Ge	biet DE 4311-3	04 - Wälder b	oei Cappenber	g	N. / C	ic. C	0,000	0,000	0,000	0,020	0,004	0,270	0,270	0,270	140
3P_26	9110	37,3	20,8	Ja	0,086	0,082	0,100	-0,050	k.A	k.A	k.A	k.A	k.A	k.A	-0,050	0,000	0,010	0,065	0,025	0,4%	0,4%	0,1%	Ne
3P_27	9110	37,3	20,1	Ja	0,091	0,081	0,098	-0,050	k.A	k.A	k.A	k.A	k.A	k.A	-0,050	0,000	0,010	0,065	0,025	0,4%	0,4%	0,1%	Ne
3P_28 3P_29	9110 91E0*	37,6 38,0	19,8 18,7	Ja Ja	0,079 0,078	0,078 0,078	0,087	-0,043 -0,040	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	-0,043 -0.040	0,000	0,008	0,065 0.065	0,030	0,4%	0,4%	0,2%	Ne Ne
3P_29 3P_30	9110	38,6	18,8	Ja Ja	0,078	0,078	0,079	-0,040	k.A	k.A	k.A	k.A	k.A	k.A	-0,040	0,000	0,008	0,005	0,033	0,4%	0,4%	0,2%	Nei
3P_31	9160	37,4	14,4	Ja	0,058	0,079	0,091	-0,041	k.A	k.A	k.A	k.A	k.A	k.A	-0,041	0,000	0,017	0,094	0,070	0,8%	0,8%	0,5%	Nei
P_21n	9110	37,3	20,1	Ja	0,108	0,095	0,109	-0,053	k.A	k.A	k.A	k.A	k.A	0,071	-0,053	0,000	0,010	0,065	0,022	0,4%	0,4%	0,1%	Nei
P_32n	91E0*	38,4	18,7	Ja	0,064	0,092	0,092	-0,041	k.A Beurteilungsp	k.A	k.A	k.A	k.A	0,038	-0,041	0,000	0,014	0,070	0,043	0,4%	0,4%	0,2%	Nei
C-1	9160	37,8	15,3	Ja	0,107	0,101	0,114	-0,057	k.A	k.A	nprofile k.A	k.A	k.A	0,047	-0,057	0,000	0,013	0,065	0,021	0,5%	0,5%	0,1%	Nei
C-2	9130	37,8	14,0	Ja	0,095	0,097	0,114	-0,057	k.A	k.A	k.A	k.A	k.A	0,043	-0,057	0,000	0,012	0,065	0,020	0,5%	0,5%	0,1%	Nei
C-3	9130	37,8	19,0	Ja	0,095	0,096	0,114	-0,057	k.A	k.A	k.A	k.A	k.A	0,051	-0,057	0,000	0,012	0,065	0,020	0,4%	0,4%	0,1%	Nei
C-4	9130	37,8	22,1	Ja	0,106	0,097	0,107	-0,057	k.A	k.A	k.A	k.A	k.A	0,051	-0,057	0,000	0,013	0,065	0,021	0,4%	0,4%	0,1%	Nei
C-5 C-6	9110 9110	37,3 37.6	20,8 16.2	Ja Ja	0,100	0,097	0,111	-0,053 -0.046	k.A k.A	k.A k.A	k.A	k.A k.A	k.A k.A	0,072 0.052	-0,053 -0.046	0,000	0,010	0,065	0,022	0,4%	0,4%	0,1%	Nei Nei
C-7	9110	37,6	19,8	Ja	0,101	0,089	0,096	-0,045	k.A	k.A	k.A	k.A	k.A	0,055	-0,046	0.000	0,009	0,065	0.028	0.4%	0,4%	0,1%	Nei
C-8	91E0*	38,0	18,7	Ja	0,091	0,093	0,091	-0,042	k.A	k.A	k.A	k.A	k.A	0,050	-0,042	0,000	0,008	0,060	0,026	0,4%	0,4%	0,1%	Nei
C-9	9160	38,4	14,4	Ja	0,066	0,093	0,099	-0,043	k.A	k.A	k.A	k.A	k.A	0,051	-0,043	0,000	0,017	0,094	0,068	0,8%	0,8%	0,5%	Nei
C-10	9160 9110	38,4 38,4	16,4 19,8	Ja Ja	0,064	0,088	0,096	-0,042 -0,041	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	0,051 0,047	-0,042 -0,041	0,000	0,019 0,018	0,094 0,094	0,071 0,071	0,7%	0,7%	0,4%	Nei Nei
C-11																							

Abschätzung der Stickstoffdeposition durch das Industrieareal newPark in FFH-Gebiete unter Berücksichtigung von Summationsprojekten und der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen"

rteilungs- ounkt:		Vorbelastung: [kg/ha*a]	CLnutN: [kg/ha*a]	Vorbelastung > CLnutN?	KW Lünen TKL [kg/ha*a]	HKW Herne Block 5 [kg/ha*a]	KW Datteln Block 4 [kg/ha*a]	KW Datteln Block 1-3 [kg/ha*a]	Nr. 1 [kg/ha*a]	Nr. 3 [kg/ha*a]	Nr. 11 [kg/ha*a]	Tierhaltung Nr. 19 [kg/ha*a]	BMKW Lünen [kg/ha*a]	Aurubis AG Lünen [kg/ha*a]	Summations projekte Gesamt (nur Anteile >0,3)	Düngebedingte N-Deposition (Nur NH3) [kg/ha*a]	Verkehr newPark [kg/ha*a]	Industrie newPark [kg/ha*a]	Summe newPark + Summations projekte: [kg/ha*a]	Anteil newPark am CLnutN ohne Schadensbegren zung: [%]	Anteil newPark am CLnutN mit Schadensbegren An zung: [%]	teil Summe am CLnutN: [%]	Überschreitu 3% Schwelle Summation
BP 1	9190	37.4	16,2	Ja	0,008	0,048	0,044	-0.036	FH-Gebiet DE k.A	4209-302 - Lij k.A	ppeaue k.A	k.A	k.A	k.A	-0.036	0,000	0,042	0.029	0.035	0.4%	0.4%	0,2%	Nein
BP 2	91F0	37.1	23,8	Ja	0,008	0,050	0,044	-0,036	k.A	k.A	k.A	k.A	k.A	k.A	-0,036	0,000	0,042	0,029	0,036	0,3%	0,4%	0,2%	Nein
BP_3	91E0*	37,1	25,2	Ja	0,009	0,063	0,085	-0,036	k.A	k.A	k.A	k.A	k.A	k.A	-0,036	0,000	0,141	0,086	0,191	0,9%	0,9%	0,8%	Nein
3P_4	91F0	37,6	23,8	Ja	0,010	0,059	0,083	-0,035	0,089	0,109	0,070	0,010	0,015	k.A	-0,035	0,000	0,146	0,086	0,197	1,0%	1,0%	0,8%	Nein
BP_6 BP_7	91E0* 9190	37,2 37,2	20,5 17,6	Ja Ja	0,023 0,023	0,075 0,077	0,112 0,112	-0,062 -0,062	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	-0,062 -0,062	-0,910 -0,710	0,239 0,254	0,735 0,735	0,002 0,217	4,7% 5.6%	0,3% 1,6%	0,0% 1,2%	Nein Nein
P 7b	9110	37,2	16,0	Ja	0,023	0,077	0,112	-0,062	k.A	k.A	k.A	k.A	k.A	k.A	-0,062	-0,710	0,338	0,735	0,217	7,0%	1,5%	1,1%	Nein
3P_9	6510	29,7	49,2	Nein	0,011	0,084	0,122	-0,061	k.A	k.A	k.A	k.A	k.A	k.A	-0,061	0,000	0,093	0,228	0,260	0,7%	0,7%	0,5%	Nein
P_11	9160	36,5	18,8	Ja	0,021	0,092	0,123	-0,073	k.A	k.A	k.A	k.A	k.A	k.A	-0,073	0,000	0,046	0,090	0,063	0,7%	0,7%	0,3%	Nein
P_12	91F0	36,5	22,7	Ja	0,027	0,092	0,126	-0,072	0,266	0,045	0,182	0,004	0,018	k.A	-0,072	0,000	0,043	0,090	0,061	0,6%	0,6%	0,3%	Nein
P_13 P_14	6430 6430	32,5 31,9	29,2 29,2	Ja Ja	0,098	0,087	0,120 0,101	-0,070 -0,059	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	-0,070 -0,059	0,000	0,035 0,026	0,090	0,055 0,057	0,4%	0,4%	0,2%	Nein Nein
2_14 2_2n	91E0*	37,6	18.6	Ja Ja	0,108	0,092	0,101	-0,059	0,017	0,071	0,016	0,052	0,009	k.A	-0,059	-1.070	0,026	0,090	-0.017	6.0%	0,4%	-0,1%	Neir
P_3n	9190	37,2	16,9	Ja	0,023	0,077	0,116	-0,064	0,025	0,089	0,026	0,030	0,008	k.A	-0,064	-1,260	0,258	0,787	-0,279	6,2%	-1,3%	-1,7%	Neir
_3bn	9110	37,2	15,8	Ja	0,023	0,077	0,112	-0,062	0,025	0,089	0,024	0,032	0,008	k.A	-0,062	-0,810	0,276	0,791	0,195	6,8%	1,6%	1,2%	Neir
_6bn	6430	29,7	29,2	Ja	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	0,000	0,000	0,048	0,147	0,195	0,7%	0,7%	0,7%	Nein
22n 23n	9160 91E0*	37,1 37.2	19,4 22.2	Ja Ja	k.A 0.023	k.A 0.075	k.A 0.112	k.A -0.062	k.A 0.025	k.A 0.089	k.A 0.026	k.A 0.030	k.A 0.008	k.A k.A	0,000 -0.062	0,000 -1.260	0,025 0.258	0,029	0,054 -0.277	0,3% 4.7%	0,3% -1.0%	0,3%	Neir Neir
25n	9160	36,5	18,8	Ja	0,023	0,092	0,112	-0,002	0,197	0,054	0,020	0,004	0,000	k.A	-0,002	0.000	0,255	0,767	0,129	1,1%	1,1%	0,7%	Neir
26n	9190	36,5	18,7	Ja	0,020	0,085	0,127	-0,073	0,174	0,054	0,196	0,005	0,023	k.A	-0,073	0,000	0,052	0,147	0,126	1,1%	1,1%	0,7%	Neir
_27n	91F0	36,5	23,8	Ja	0,033	0,090	0,127	-0,069	0,145	0,065	0,174	0,005	0,020	k.A	-0,069	0,000	0,046	0,095	0,072	0,6%	0,6%	0,3%	Nein
_28n	6430	36,6	29,2	Ja	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	0,000	0,000	0,041	0,090	0,131	0,4%	0,4%	0,4%	Neir
P 18	91E0*	35,5	19,3	lo.	0,100	0,071	FFH-Gel 0,079	oiet DE 4314-30 -0,034		itte Lippe - Ur k.A		k.A	k.A	k.A	-0,034	0,000	0,006	0,029	0,001	0,2%	0,2%	0,0%	Nein
P 9n	91E0*	35,6	19.1	Ja Ja	0,100	0,093	0,079	-0,052	k.A k.A	k.A	k.A k.A	k.A	k.A	0,011	0.267	0.000	0,000	0,029	0,373	0.6%	0,6%	2,0%	Nein
2 13n	91E0*	35,9	19,3	Ja	0,193	0,081	0,077	-0,042	k.A	k.A	k.A	k.A	k.A	0,060	-0,042	0,000	0,010	0,086	0,054	0,5%	0,5%	0,3%	Nein
								biet DE 4311-3		pen, Im Mars	che und Lang	jerner Hufeisen											
P_19	91E0*	35,7	19,3	Ja	0,119	0,070	0,066	-0,033	k.A	k.A	k.A	k.A	k.A	k.A	-0,033	0,000	0,007	0,029	0,003	0,2%	0,2%	0,0%	Nein
P_20 P_22	6430 3150	31,9 31,9	29,2 36,8	Ja Nein	0,095	0,072 0,072	0,079 0,081	-0,035 -0,035	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	-0,035 -0,035	0,000	0,007	0,029	0,001	0,1% 0,1%	0,1%	0,0%	Nein Nein
P 23	6510	29,3	38,2	Nein	0,099	0,072	0,085	-0,039	k.A	k.A	k.A	k.A	k.A	k.A	-0,039	0,000	0,005	0,029	-0,005	0,1%	0,1%	0,0%	Nein
P_24	91F0	36,3	26,7	Ja	0,099	0,075	0,092	-0,039	k.A	k.A	k.A	k.A	k.A	k.A	-0,039	0,000	0,006	0,029	-0,004	0,1%	0,1%	0,0%	Nein
2_16n	6510	29,3	49,2	Nein	0,098	0,071	0,092	-0,040	k.A	k.A	k.A	k.A	k.A	0,081	-0,040	0,000	0,006	0,029	-0,005	0,1%	0,1%	0,0%	Neir
_30n	91E0*	35,7	20,8	Ja	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	k.A	0,000	0,000	0,006	0,029	0,035	0,2%	0,2%	0,2%	Neir
26	9110	37.3	20.8	Ja	0.086	0.082	0,100	FFH-Ge -0.050	biet DE 4311-30 k.A	04 - Wälder be	ei Cappenberg k.A	k.A	k.A	k.A	-0.050	0,000	0,011	0.086	0.047	0.5%	0.5%	0,2%	Neir
27	9110	37,3	20,8	Ja Ja	0,000	0,081	0,100	-0,050	k.A	k.A	k.A	k.A	k.A	k.A	-0,050	0,000	0,011	0,086	0,047	0,5%	0,5%	0,2%	Neir
28	9110	37,6	19,8	Ja	0,079	0,078	0,087	-0,043	k.A	k.A	k.A	k.A	k.A	k.A	-0,043	0,000	0,008	0,086	0,051	0,5%	0,5%	0,3%	Nein
29	91E0*	38,0	18,7	Ja	0,078	0,078	0,079	-0,040	k.A	k.A	k.A	k.A	k.A	k.A	-0,040	0,000	0,009	0,086	0,055	0,5%	0,5%	0,3%	Nein
P_30	9110	38,6	18,8	Ja	0,053	0,073	0,079	-0,036	k.A	k.A	k.A	k.A	k.A	k.A	-0,036	0,000	0,013	0,090	0,067	0,5%	0,5%	0,4%	Nein
P_31 P_21n	9160 9110	37,4 37,3	14,4 20,1	Ja Ja	0,058	0,079 0,095	0,091	-0,041 -0,053	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A 0,071	-0,041 -0,053	0,000	0,018	0,114	0,091 0,044	0,9%	0,9%	0,6%	Nein Nein
32n	91E0*	38,4	18,7	Ja	0,064	0,093	0,109	-0,033	k.A	k.A	k.A	k.A	k.A	0,038	-0,033	0,000	0,011	0,000	0,044	0,6%	0,6%	0,3%	Neir
									Beurteilungsp	unkte Boden _l	orofile												
C-1	9160	37,8	15,3	Ja	0,107	0,101	0,114	-0,057	k.A	k.A	k.A	k.A	k.A	0,047	-0,057	0,000	0,013	0,086	0,042	0,6%	0,6%	0,3%	Nein
C-2	9130 9130	37,8 37.8	14,0 19.0	Ja Ja	0,095	0,097	0,114 0,114	-0,057 -0.057	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	0,043 0,051	-0,057 -0.057	0,000	0,012 0.012	0,086	0,041	0,7%	0,7%	0,3%	Nein Nein
C-3 C-4	9130	37,8	19,0	Ja Ja	0,095	0,096	0,114	-0,057	k.A	k.A	k.A	k.A	k.A k.A	0,051	-0,057	0,000	0,012	0,086	0,041	0,5%	0,5%	0,2%	Nein Nein
C-5	9110	37,3	20.8	Ja	0,100	0,097	0,107	-0,057	k.A	k.A	k.A	k.A	k.A	0,031	-0,057	0.000	0,014	0,086	0,043	0,5%	0,5%	0.2%	Nein
C-6	9110	37,6	16,2	Ja	0,091	0,089	0,096	-0,046	k.A	k.A	k.A	k.A	k.A	0,052	-0,046	0,000	0,010	0,086	0,050	0,6%	0,6%	0,3%	Nein
C-7	9110	37,6	19,8	Ja	0,101	0,093	0,096	-0,045	k.A	k.A	k.A	k.A	k.A	0,055	-0,045	0,000	0,008	0,086	0,049	0,5%	0,5%	0,2%	Nein
C-8	91E0*	38,0	18,7	Ja	0,091	0,093	0,091	-0,042	k.A	k.A	k.A	k.A	k.A	0,050	-0,042	0,000	0,009	0,081	0,048	0,5%	0,5%	0,3%	Nein
C-9 C-10	9160 9160	38,4 38,4	14,4 16,4	Ja Ja	0,066 0,064	0,093 0,088	0,099	-0,043 -0,042	k.A k.A	k.A k.A	k.A k.A	k.A k.A	k.A k.A	0,051 0,051	-0,043 -0,042	0,000	0,018 0,019	0,114 0,114	0,089 0,091	0,9%	0,9% 0.8%	0,6%	Nein Nein
2-10 2-11	9160	38,4	16,4	Ja Ja	0,064	0,088	0,096	-0,042	k.A	k.A	k.A	k.A	k.A	0,051	-0,042	0,000	0,019	0,114	0,091	0,8%	0,8%	0,6%	Nein Nein
		rophierenden Sti		Ja	0,004	0,000	0,100	*U,U4 I	N.A	N.A	N.A	N.M	N.A	0,047	=0,041	0,000	0,015	0,114	0,052	U, I /0	U, I /0	0,070	ivell

Abschätzung der Säuredeposition durch das Industrieareal newPark in FFH-Gebiete unter Berücksichtigung von Summationsprojekten und der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen"

	Lebensrau	Vorbelastung aus N und S: [eg/ha*a]	CL(S+N): [eq/ha*a]	Vorbelastung > CL(S+N)?	KW Lünen TKL [eq/ha*a]	HKW Herne Block 5 [eq/ha*a]	KW Datteln Block 4 [eq/ha*a]	KW Datteln Block 1-3 [eg/ha*a]	Tierhaltun Nr. 1 [eq/ha*a]	g Tierhaltung Nr. 3 [eq/ha*a]	Tierhaltung Nr. 11 [eq/ha*a]	Tierhaltung Nr. 19 [eg/ha*a]	BMKW Lünen [eq/ha*a]	Aurubis AG Lünen [eq/ha*a]	Summations I projekte Gesamt (nur Anteile >30) [eq/ha*a]	Düngebedingte Säure- Deposition (Nur NH3)	Verkehr newPark [eq/ha*a]	Industrie newPark [eq/ha*a]	Summe newPark + Summations projekte: [eq/ha*a]	Anteil newPark am CL(S+N) Ohne Schadensbegren zung: [%]	Anteil newPark	CL(S+N) Gesamt Vorbelastung + newPark mit Schadensbegren zung + Summation:	Vorbelastung + Summation > CL	Anteil Summe am CLnutN: [%]	Übersc ung 3 Schwel Summa ?
								FF	H-Gebiet	DE 4209-302 - Li	ppeaue														
3P_1 3P_2	9190 91F0	3778 3771	2332 3760	Ja Ja	1,8 3,3	14,3 15.6	18,3 16.1	-23,3 -26,2	0,0	0,0	0,0	0,0	0,0	k.A.	-23,3 -26,2	0,0	2,9 3,3	11,9 11.9	-8 -11	0,6%	0,6%	3770 3760	Ja Ja	-0,4% -0,3%	Neir Neir
3P 3	91E0*	3761	3629	Ja	2,1	19.4	30,2	-23,1	0.0	0,0	0.0	0.0	0,0	k.A.	7.1	0,0	9,6	14.5	31	0,4%	0,4%	3792	Ja	0,9%	Nei
3P_4	91F0	3755	3741	Ja	2,2	18,3	30,2	-22,4	6,4	7,8	5,0	0,7	1,1	k.A.	7,8	0,0	10,0	24,3	42	0,9%	0,9%	3797	Ja	1,1%	Ne
3P_6	91E0*	3741	2112	Ja	6,2	23,2	51,2	-41,0	0,0	0,0	0,0	0,0	0,0	k.A.	10,2	-65,0	15,4	164,3	125	8,5%	5,4%	3866	Ja	5,9%	J
3P_7 iP 7b	9190 9110	3741 3741	1971 1863	Ja	6,2 6,7	23,8 23,8	51,2	-41,4 -41,4	0,0	0,0	0,0	0,0	0,0	k.A.	9,8 9.8	-50,7 -62,9	16,3 21,5	164,3 166,6	140	9,2% 10,1%	6,6% 6,7%	3881 3876	Ja	7,1% 7,2%	J
3P_7b 3P_9	9110 6510	3741	1863 4757	Ja Nein	2,7	23,8	51,2 51,4	-41,4 -38,4	0,0	0,0	0,0	0,0	0,0	k.A.	9,8	-62,9 0,0	6,2	166,6 51,3	135 70	10,1%	1,2%	3876	Ja Nein	1,5%	Summ
P_11	9160	3736	2357	Ja	4,2	28,4	53,5	-45,5	0,0	0,0	0,0	0,0	0,0	k.A.	8,0	0,0	3,1	24,7	36	1,2%	1,2%	3772	Ja	1,5%	Ne
P_12	91F0	3736	2466	Ja	5,5	28,4	54,6	-44,2	19,0	3,2	13,0	0,3	1,3	k.A.	10,4	0,0	2,9	24,7	38	1,1%	1,1%	3774	Ja	1,5%	N
P_13	6430	3380	4162	Nein	26,7	26,6	52,6	-42,7	0,0	0,0	0,0	0,0	0,0	k.A.	9,9	0,0	2,4	24,7	37 33	0,7%	0,7%	3417	Nein	0,9%	Summ
2_14 2 2n	6430 91E0*	3355 3796	4199 4083	Nein Nein	20,4 4,3	28,1	42,8 43,3	-36,3 -42,9	0,0 1,2	0,0 5.1	0,0	0,0 3.7	0,0	k.A.	6,5 0,4	0,0 -76,4	1,8 20,4	24,7 166,6	111	0,6% 4,6%	0,6%	3388 3907	Nein Nein	0,8% 2,7%	Sumn
2 3n	9190	3774	2125	Ja	6,2	23,8	50,0	-43,0	1,8	6,4	1,1	2,1	0,6	k.A.	7,0	-90,0	16.6	166,6	100	8.6%	4,4%	3874	Ja	4.7%	Junilli
3bn	9110	3774	1954	Ja	6,2	23,8	51,2	-41,4	1,8	6,4	1,7	2,3	0,6	k.A.	9,8	-57,9	17,7	176,8	146	10,0%	7,0%	3920	Ja	7,5%	
_6bn	6430	3089	4162	Nein	4,7	27,5	55,8	-40,4	0,0	0,0	0,0	0,0	0,0	k.A.	15,4	0,0	3,3	37,1	56	1,0%	1,0%	3145	Nein	1,3%	Sumn
22n 23n	9160 91E0*	3801 3774	2816 2514	Ja Ja	k.A. 6,2	k.A. 23,2	k.A. 51,2	k.A. -41,0	0,0 1,8	0,0 6,4	0,0	0,0	0,0	k.A. k.A.	0,0 10,2	0,0 -90,0	1,8 16.6	11,9 166,6	14 103	0,5% 7,3%	0,5% 3,7%	3815 3877	Ja Ja	0,5% 4,1%	N
_23n 25n	9160	3774	2357	Ja Ja	2,1	28,4	53,5	-41,0 -45,3	14.1	3,9	18.4	0,3	1,4	k.A.	8.2	-90,0	3,7	37.1	49	1.7%	1.7%	3785	Ja Ja	2,1%	N
_26n	9190	3736	2357	Ja	4,3	26,3	54,1	-45,3	12,4	3,9	14,0	0,4	1,6	k.A.	8,8	0,0	3,5	37,1	49	1,7%	1,7%	3785	Ja	2,1%	N
_27n	91F0	3769	4243	Nein	6,6	28,0	54,1	-42,9	10,4	4,6	12,4	0,4	1,4	k.A.	11,2	0,0	3,1	25,0	39	0,7%	0,7%	3808	Nein	0,9%	Summ
_28n	6430	3704	3936	Nein	7,0	27,9	54,6 FFH-Geb	-44,2 iet DE 4314-302	0,0	0,0	0,0	0,0 Soest, Warendo	0,0	k.A.	10,4	0,0	2,8	24,7	38	0,7%	0,7%	3742	Nein	1,0%	Sumn
18	91E0*	3624	3605	Ja	23,1	20,8	32,0	-18,4	0.0	0.0	0,0	0,0	0,0	k.A.	13,6	0,0	0,4	11,9	26	0,3%	0,3%	3650	Ja	0,7%	N
P_9n	91E0*	3679	4176	Nein	82,9	28,1	38,7	-31,5	0,0	0,0	0,0	0,0	0,0	7,5	90,1	0,0	1,3	24,3	116	0,6%	0,6%	3795	Nein	2,8%	Summ
_13n	91E0*	3696	4172	Nein	41,3	24,2	32,0	-23,9	0,0	0,0	0,0	0,0	0,0	64,8	114,2	0,0	0,7	14,5	129	0,4%	0,4%	3825	Nein	3,1%	Sumn
19	91E0*	3649	3617	Ja	27.7	20,6	FFH-Get 27,0	iet DE 4311-301 -17,9	- In den K	Kämpen, Im Mars 0,0	0.0	gerner Hufeiser 0,0	0,0	k.A.	-17,9	0.0	0,5	11,9	-5	0.3%	0.3%	3644	Ja	-0.2%	N
P 20	6430	3269	4298	Nein	22,9	21,0	32,0	-18,8	0,0	0,0	0,0	0,0	0,0	k.A.	13,2	0,0	0,4	11,9	26	0,3%	0,3%	3295	Nein	0,6%	Summ
22	3150	3269	4123	Nein	22,9	21,0	33,6	-18,8	0,0	0,0	0,0	0,0	0,0	k.A.	14,8	0,0	0,4	11,9	27	0,3%	0,3%	3296	Nein	0,7%	Summ
23	6510	2986	2825	Ja	26,1	21,6	35,0	-20,7	0,0	0,0	0,0	0,0	0,0	k.A.	14,3	0,0	0,4	11,9	27	0,4%	0,4%	3013	Ja	0,9%	N
P_24 P_16n	91F0 6510	3623 2986	3648 4707	Nein Nein	26,6 26,4	22,5 21,0	37,4 37,4	-20,9 -21,4	0,0	0,0	0,0	0,0	0,0	k.A. 70.0	16,5 86,0	0,0	0,4	11,9 11.9	29 98	0,3%	0,3%	3652 3084	Ja Nein	0,8%	Summ
30n	91E0*	3683	4496	Nein	26,4 k.A.	21,0 k.A.	37,4 k.A.	-21,4 k.A.	0,0	0,0	0,0	0,0	0,0	70,0 k.A.	0,0	0,0	0,4	11,9	12	0,3%	0,3%	3084	Nein Nein	0,3%	Sumn
								FFH-Gebi	et DE 431'	1-304 - Wälder be	ei Cappenber	g													
26	9110	3712	2850	Ja	24,4	24,7	42,5	-27,5	0,0	0,0	0,0	0,0	0,0	k.A.	15,0	0,0	0,7	14,5	30	0,5%	0,5%	3742	Ja	1,1%	N
27	9110	3712	2848	Ja	26,3	24,3	41,4	-27,6	0,0	0,0	0,0	0,0	0,0	k.A.	13,8	0,0	0,7	14,5	29	0,5%	0,5%	3741	Ja J-	1,0%	N
28	9110 91E0*	3714 3729	2841 3216	Ja Ja	24,0 23,6	23,6	35,8 33,0	-22,9 -21,2	0,0	0,0	0,0	0,0	0,0	k.A.	12,9 11,8	0,0	0,6	14,5 14,5	28 27	0,5%	0,5%	3742 3756	Ja Ja	1,0%	N N
30	9110	3767	2781	Ja	15,6	21,7	32,5	-19,5	0,0	0,0	0,0	0,0	0,0	k.A.	13,0	0,0	0,9	24,7	39	0,9%	0,9%	3806	Ja	1,4%	N
231	9160	3746	2536	Ja	15,6	24,0	37,6	-23,2	0,0	0,0	0,0	0,0	0,0	k.A.	14,4	0,0	1,2	26,4	42	1,1%	1,1%	3788	Ja	1,7%	N
21n 32n	9110 91E0*	3712 3746	2848 3071	Ja	31,1 18,0	29,0 27,7	48,7 40,7	-33,0 -25,2	0,0	0,0	0,0	0,0	0,0	80,6 33,0	127,4	0,0	0,7 1,0	14,5 24,7	143 74	0,5%	0,5%	3855 3820	Ja	5,0%	N
JZII	9 IEU	3/40	3071	Ja	10,0	21,1	40,7	-20,2 P	0,0 Beurteilund	0,0 spunkte Bodeno	0,0 profile	0,0	0,0	33,0	48,5	0,0	1,0	24,1	/4	0,8%	0,8%	3020	Ja	2,4%	N
C-1	9160	3799	2635	Ja	28,4	30,6	50,8	-36,3	0,0	0,0	0,0	0,0	0,0	48,2	93,3	0,0	0,9	14,5	109	0,6%	0,6%	3908	Ja	4,1%	
C-2	9130	3799	2623	Ja	25,3	29,6	50,8	-35,6	0,0	0,0	0,0	0,0	0,0	42,9	58,1	0,0	0,8	14,5	73	0,6%	0,6%	3872	Ja	2,8%	N
C-3 C-4	9130 9130	3799 3799	2754 3016	Ja	25,3 28,2	29,4 29,5	50,8	-35,6 -35,6	0,0	0,0	0,0	0,0	0,0	51,3 51,3	66,5 64,0	0,0	0,8	14,5	82 79	0,6%	0,6%	3881 3878	Ja	3,0% 2,6%	No.
C-5	9130	3799	2850	Ja Ja	28,2	29,5	48,3 50,0	-35,6	0,0	0,0	0,0	0,0	0,0	51,3 80,2	97,3	0,0	0,9	14,5 14,5	112	0,5%	0,5%	3878	Ja Ja	3,9%	Ne
C-6	9110	3719	2422	Ja	25,9	26,8	42,3	-28,2	0,0	0,0	0,0	0,0	0,0	54,9	69,0	0,0	0,7	14,5	84	0,6%	0,6%	3803	Ja	3,5%	J
C-7	9110	3714	2841	Ja	30,0	28,4	41,8	-27,4	0,0	0,0	0,0	0,0	0,0	55,6	70,0	0,0	0,6	14,5	85	0,5%	0,5%	3799	Ja	3,0%	Ne
C-8	91E0* 9160	3729	3216	Ja	27,4	28,1	39,8	-25,2	0,0	0,0	0,0	0,0	0,0	47,2	61,8	0,0	0,6	14,1	77	0,5%	0,5%	3806	Ja I-	2,4%	N
C-9 C-10	9160 9160	3746 3746	2536 2751	Ja Ja	18,1 18,3	28,4 26,9	43,2 43,2	-26,9 -26,5	0,0	0,0	0,0	0,0	0,0	51,3 51,3	67,6 68,0	0,0	1,2	26,4 26.4	95 96	1,1%	1,1%	3841 3842	Ja Ja	3,8%	
2-10 2-11	9110	3746	2800	Ja	18.3	26,9	43,2	-25,7	0.0	0,0	0.0	0.0	0,0	48.2	66.3	0.0	1,3	26,4	94	1.0%	1.0%	3840	Ja Ja	3,5%	
		rsauernden Stick					,-	,-	-,-	-,-	-,-	-,-	,-	,-	,-	-,-	-,-			-,	-1				

Abschätzung der Säuredeposition durch das Industrieareal newPark in FFH-Gebiete unter Berücksichtigung von Summationsprojekten und der Schadensbegrenzungsmaßnahme "Entfall von düngebedingten Stickstoff- und Säureeinträgen"

		(WALD)													Summations Di	üngebedingte Säure-				Anteil newPark am CL(S+N) Ohne	Anteil newPark	CL(S+N) Gesamt Vorbelastung + newPark mit Schadensbegren		Anteil	Überschr ung 3% Schwelle
ırteilungsp unkt:				Vorbelastung > CL(S+N)?	TKL	Block 5	Block 4	Block 1-3	Nr. 1	Tierhaltung T Nr. 3	Nr. 11	Nr. 19	BMKW Lünen	Aurubis AG Lünen		Deposition (Nur NH3)	Verkehr newPark	Industrie newPark	Summe:	Schadensbegren zung:		zung +	Vorbelastung + Summation > CL	Summe am CLnutN:	
		[eq/ha*a]	[eq/ha*a]		[eq/ha*a]	[eq/ha*a]	[eq/ha*a]	[eq/ha*a]	[eq/ha*a] H-Gebiet Di	[eq/ha*a] 4209-302 - Lipp	[eq/ha*a] eaue	[eq/ha*a]	[eq/ha*a]	[eq/ha*a]			[eq/ha*a]	[eq/ha*a]	[eq/ha*a]	[%]				[%]	
BP_1	9190	3778	2332	Ja	1,8	14,3	18,3	-23,3	0,0	0,0	0,0	0,0	0,0	k.A.	-23,3	0,0	3,0	14,4	-6	0,7%	0,7%	3772	Ja	-0,3%	Nein
3P_2 3P_3	91F0 91E0*	3771 3761	3760 3629	Ja Ja	3,3 2.1	15,6 19.4	16,1 30,2	-26,2 -23.1	0,0	0,0	0,0	0,0	0,0	k.A.	-26,2 7.1	0,0	3,4 10.1	14,4 18.4	-8 36	0,5%	0,5%	3763 3797	Ja Ja	-0,2% 1.0%	Nein Nein
BP_3 BP 4	91E0	3755	3741	Ja Ja	2,1	18.3	30,2	-23,1	6.4	7.8	5,0	0,0	1.1	k.A.	7,1	0,0	10,1	30,8	49	1,1%	1,1%	3804	Ja Ja	1,0%	Nein
3P_6	91E0*	3741	2112	Ja	6,2	23,2	51,2	-41,0	0,0	0,0	0,0	0,0	0,0	k.A.	10,2	-65,0	17,1	212,7	175	10,9%	7,8%	3916	Ja	8,3%	Ja
3P_7	9190	3741	1971	Ja	6,2	23,8	51,2	-41,4	0,0	0,0	0,0	0,0	0,0	k.A.	9,8	-50,7	18,2	212,7	190	11,7%	9,1%	3931	Ja	9,6%	Ja
BP_7b BP 9	9110 6510	3741 3089	1863 4757	Ja Nein	6,7 2.7	23,8	51,2 51,4	-41,4 -38.4	0,0	0,0	0,0	0,0	0,0	k.A.	9,8	-62,9 0.0	24,3 6.6	216,4 65.6	188 85	12,9% 1.5%	9,5%	3929 3174	Ja Nein	10,1%	Ja Summe <
P 11	9160	3736	2357	Nein Ja	4,2	26,3	51,4	-38,4 -45,5	0,0	0,0	0,0	0,0	0,0	k.A.	13,0 8,0	0,0	3,3	31,1	42	1,5%	1,5%	3174	Ja Nein	1,8%	Summe <
P_12	91F0	3736	2466	Ja	5,5	28,4	54,6	-44,2	19,0	3,2	13,0	0,3	1,3	k.A.	10,4	0,0	3,0	31,1	45	1,4%	1,4%	3781	Ja	1,8%	Nein
P_13	6430	3380	4162	Nein	26,7	26,6	52,6	-42,7	0,0	0,0	0,0	0,0	0,0	k.A.	9,9	0,0	2,5	31,1	44	0,8%	0,8%	3424	Nein	1,0%	Summe <
P_14	6430 91F0*	3355 3796	4199 4083	Nein	20,4	28,1	42,8 43.3	-36,3	0,0	0,0 5.1	0,0	0,0 3.7	0,0	k.A.	6,5 0.4	0,0 -76.4	1,9 23.5	31,1 216.4	40 164	0,8%	0,8%	3395 3960	Nein Nein	0,9%	Summe <
P_2n P_3n	91E0* 9190	3796 3774	4083 2125	Nein Ja	6,2	23,1 23,8	43,3 50,0	-42,9 -43,0	1,2	5,1 6,4	1,1	3,7 2,1	0,6	k.A.	7,0	-76,4 -90,0	23,5 18,5	216,4 216,4	164	5,9% 11,1%	4,0% 6.8%	3960 3926	Nein Ja	4,0% 7,1%	Summe <
3bn	9110	3774	1954	Ja	6,2	23,8	51,2	-41,4	1,8	6,4	1,7	2,3	0,6	k.A.	9,8	-57,9	19,8	229,1	201	12,7%	9,8%	3975	Ja	10,3%	Ja
6bn	6430	3089	4162	Nein	4,7	27,5	55,8	-40,4	0,0	0,0	0,0	0,0	0,0	k.A.	15,4	0,0	3,4	47,5	66	1,2%	1,2%	3155	Nein	1,6%	Summe <
22n	9160	3801	2816	Ja	k.A.	k.A.	k.A.	k.A.	0,0	0,0	0,0	0,0	0,0	k.A.	0,0	0,0	1,8	14,4	16	0,6%	0,6%	3817	Ja	0,6%	Nein
223n 25n	91E0* 9160	3774 3736	2514 2357	Ja Ja	6,2 2,1	23,2 28.4	51,2 53.5	-41,0 -45.3	1,8 14.1	6,4 3.9	1,9 18.4	2,1 0.3	0,6 1.4	k.A.	10,2 8.2	-90,0 0.0	18,5 3.9	216,4 47.5	155 60	9,3%	5,8%	3929 3796	Ja Ja	6,2%	Ja Nein
P_25n P_26n	9190	3736	2357	Ja Ja	4,3	26,3	54,1	-45,3 -45,3	12,4	3,9	14,0	0,3	1,4	k.A.	8,2	0,0	3,9	47,5	60	2,2%	2,2%	3796	Ja Ja	2,5%	Nein
P_27n	91F0	3769	4243	Nein	6,6	28,0	54,1	-42,9	10,4	4,6	12,4	0,4	1,4	k.A.	11,2	0,0	3,3	31,4	46	0,8%	0,8%	3815	Nein	1,1%	Summe <
P_28n	6430	3704	3936	Nein	7,0	27,9	54,6	-44,2	0,0	0,0	0,0	0,0	0,0	k.A.	10,4	0,0	3,0	31,1	45	0,9%	0,9%	3749	Nein	1,1%	Summe <
P 18	91E0*	3624	3605	le .	22.4	20.8	FFH-Get	oiet DE 4314-302		nitte Lippe - Unn		Soest, Warendor	0.0	k.A.	13.6	0.0	0.4	14.4	28	0.4%	0.4%	3652	Ja	0.8%	Nein
BP_18 BP_9n	91E0* 91E0*	3624 3679	3605 4176	Ja Nein	23,1 82.9	20,8	32,0 38,7	-18,4 -31,5	0,0	0,0	0,0	0,0	0,0	k.A. 7,5	13,6	0,0	1,4	14,4 30.8	122	0,4%	0,4%	3652 3801	Ja Nein		Nein Summe <
P_13n	91E0*	3696	4172	Nein	41,3	24,2	32,0	-23,9	0,0	0,0	0,0	0,0	0,0	64,8	114,2	0,0	0,7	18,4	133	0,5%	0,5%	3829	Nein		Summe <
							FFH-Ge	biet DE 4311-301	- In den Kä	mpen, Im Marsci	he und Lan	gerner Hufeisen													
SP_19 SP 20	91E0* 6430	3649 3269	3617 4298	Ja Nein	27,7	20,6	27,0	-17,9 -18.8	0,0	0,0	0,0	0,0	0,0	k.A. k.A.	-17,9 13,2	0,0	0,5 0,5	14,4 14.4	-3 28	0,4%	0,4%	3646 3297	Ja Nein	-0,1% 0,7%	Nein Summe <
BP_20 BP_22	3150	3269	4298	Nein	22,9 22,9	21,0 21.0	32,0 33.6	-18,8 -18.8	0,0	0,0	0,0	0,0	0,0	k.A.	13,2	0,0	0,5	14,4	30	0,3%	0,3%	3297	Nein Nein	0,7%	Summe <
P 23	6510	2986	2825	Ja	26,1	21,6	35,0	-20,7	0,0	0,0	0,0	0,0	0,0	k.A.	14,3	0,0	0,4	14,4	29	0,5%	0,5%	3015	Ja	1,0%	Nein
P_24	91F0	3623	3648	Nein	26,6	22,5	37,4	-20,9	0,0	0,0	0,0	0,0	0,0	k.A.	16,5	0,0	0,4	14,4	31	0,4%	0,4%	3654	Ja	0,9%	Nein
P_16n	6510	2986	4707	Nein	26,4	21,0	37,4	-21,4	0,0	0,0	0,0	0,0	0,0	70,0	86,0	0,0	0,4	14,4	101	0,3%	0,3%	3087	Nein	2,1%	Summe <
2_30n	91E0*	3683	4496	Nein	k.A.	k.A.	k.A.	k.A.	0,0 et DE 4311-	0,0 304 - Wälder bei	0,0	0,0	0,0	k.A.	0,0	0,0	0,4	14,4	15	0,3%	0,3%	3698	Nein	0,3%	Summe <
P 26	9110	3712	2850	Ja	24,4	24,7	42,5	-27,5	0,0	0,0	0,0	0,0	0,0	k.A.	15,0	0.0	0,8	18,4	34	0,7%	0,7%	3746	Ja	1,2%	Nein
P 27	9110	3712	2848	Ja	26,3	24,3	41,4	-27,6	0,0	0,0	0,0	0,0	0,0	k.A.	13,8	0,0	0,8	18,4	33	0,7%	0,7%	3745	Ja	1,2%	Nein
P_28	9110	3714	2841	Ja	24,0	23,6	35,8	-22,9	0,0	0,0	0,0	0,0	0,0	k.A.	12,9	0,0	0,6	18,4	32	0,7%	0,7%	3746	Ja	1,1%	Nein
P_29 P_30	91E0* 9110	3729 3767	3216 2781	Ja Ja	23,6 15.6	23,3 21.7	33,0 32.5	-21,2 -19.5	0,0	0,0	0,0	0,0	0,0	k.A.	11,8 13.0	0,0	0,6 1.0	18,4 31.1	31 45	0,6%	0,6%	3760 3812	Ja Ja	1,0%	Nein Nein
P_30 P_31	9110	3746	2536	Ja Ja	15,6	21,7	32,5	-19,5 -23,2	0,0	0,0	0,0	0,0	0,0	k.A.	13,0	0,0	1,0	31,1	45	1,2%	1,2%	3812 3795	Ja Ja	1,6%	Nein
2_21n	9110	3712	2848	Ja	31,1	29,0	48,7	-33,0	0,0	0,0	0,0	0,0	0,0	80,6	127,4	0,0	0,8	18,4	147	0,7%	0,7%	3859	Ja	5,1%	Ja
2_32n	91E0*	3746	3071	Ja	18,0	27,7	40,7	-25,2	0,0	0,0	0,0	0,0	0,0	33,0	48,5	0,0	1,0	31,1	81	1,0%	1,0%	3827	Ja	2,6%	Nein
2-1	9160	3799	2635	Ja	28.4	30.6	50.8	-36.3	Beurteilungs 0,0	punkte Bodenpro 0.0	ofile 0.0	0.0	0.0	48.2	93.3	0.0	0.9	18.4	113	0.7%	0.7%	3912	Ja	4.3%	-
C-1 C-2	9160	3799 3799	2635	Ja Ja	28,4	30,6 29,6	50,8	-36,3 -35,6	0,0	0,0	0,0	0,0	0,0	48,2 42.9	93,3 58.1	0,0	0,9	18,4	77	0,7%	0,7%	3912 3876	Ja Ja	3.0%	Ja Nein
C-3	9130	3799	2754	Ja	25,3	29,4	50,8	-35,6	0,0	0,0	0,0	0,0	0,0	51,3	66,5	0,0	0,9	18,4	86	0,7%	0,7%	3885	Ja	3,1%	Ja
C-4	9130	3799	3016	Ja	28,2	29,5	48,3	-35,6	0,0	0,0	0,0	0,0	0,0	51,3	64,0	0,0	1,0	18,4	83	0,6%	0,6%	3882	Ja	2,8%	Nein
C-5	9110	3712	2850	Ja	28,6	29,6	50,0	-32,9	0,0	0,0	0,0	0,0	0,0	80,2	97,3	0,0	0,8	18,4	117	0,7%	0,7%	3829	Ja	4,1%	Ja
C-6 C-7	9110 9110	3719 3714	2422 2841	Ja Ja	25,9 30,0	26,8 28,4	42,3 41,8	-28,2 -27,4	0,0	0,0	0,0	0,0	0,0	54,9 55,6	69,0 70,0	0,0	0,7 0,6	18,4 18,4	88 89	0,8%	0,8%	3807 3803	Ja Ja	3,6%	Ja Ja
C-7 C-8	9110 91E0*	3714	3216	Ja Ja	27,4	28,4	41,8 39,8	-27,4	0,0	0,0	0,0	0,0	0,0	55,6 47.2	70,0 61.8	0,0	0,6	18,4	89	0,7%	0,7%	3803	Ja Ja	2,5%	Ja Nein
C-9	9160	3746	2536	Ja	18,1	28,4	43,2	-26,9	0,0	0,0	0,0	0,0	0,0	51,3	67,6	0,0	1,3	32,8	102	1,3%	1,3%	3848	Ja	4.0%	Ja
C-10	9160	3746	2751	Ja	18,3	26,9	43,2	-26,5	0,0	0,0	0,0	0,0	0,0	51,3	68,0	0,0	1,4	32,8	102	1,2%	1,2%	3848	Ja	3,7%	Ja
C-11	9110	3746	2800	Ja	18.3	26,9	43,8	-25,7	0.0	0.0	0.0	0,0	0.0	48,2	66,3	0,0	1,4	32,8	101	1,2%	1,2%	3847	Ja	3.6%	la.